Anticalin proteins are a novel class of clinical-stage biopharmaceuticals with high potential in various disease areas. Anticalin proteins, derived from extracellular human lipocalins are single-chain proteins, with a highly stable structure that can be engineered to bind with high specificity and potency to targets of therapeutic relevance. The small size and stable structure support their development as inhalable biologics in the field of respiratory diseases as already demonstrated for PRS-060/AZD1402, an Anticalin protein currently undergoing clinical development for the treatment of asthma.
View Article and Find Full Text PDFPurpose: While patients responding to checkpoint blockade often achieve remarkable clinical responses, there is still significant unmet need due to resistant or refractory tumors. A combination of checkpoint blockade with further T-cell stimulation mediated by 4-1BB agonism may increase response rates and durability of response. A bispecific molecule that blocks the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis and localizes 4-1BB costimulation to a PD-L1-positive (PD-L1+) tumor microenvironment (TME) or tumor draining lymph nodes could maximize antitumor immunity and increase the therapeutic window beyond what has been reported for anti-4-1BB mAbs.
View Article and Find Full Text PDFCurr Protoc Cytom
December 2020
Extracellular vesicles (EVs) are sub-micron-sized membranous spheres secreted by cells. EVs play a functional role as intercellular communicators and are associated with a number of diseases. Research into EVs is an area of growing interest due their many potential uses as therapeutic agents, as diagnostic and theranostic biomarkers, and as regulators of cellular biology.
View Article and Find Full Text PDFThe benefits of anti-cancer agents extend beyond direct tumor killing. One aspect of cell death is the potential to release antigens that initiate adaptive immune responses. Here, a diffusion enhanced formulation, INT230-6, containing potent anti-cancer cytotoxic agents, was administered intratumorally into large (approx.
View Article and Find Full Text PDFBiological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers.
View Article and Find Full Text PDFThe development of extracellular vesicles (EV) for therapeutic applications is contingent upon the establishment of reproducible, scalable, and high-throughput methods for the production and purification of clinical grade EV. Methods including ultracentrifugation (U/C), ultrafiltration, immunoprecipitation, and size-exclusion chromatography (SEC) have been employed to isolate EV, each facing limitations such as efficiency, particle purity, lengthy processing time, and/or sample volume. We developed a cGMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving bioreactor culture, tangential flow filtration (TFF), and preparative SEC.
View Article and Find Full Text PDFExtracellular vesicles (EVs), including exosomes and microvesicles, are 30-800 nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs.
View Article and Find Full Text PDFTo analyze EVs with conventional flow cytometers, most researchers will find it necessary to bind EVs to beads that are large enough to be individually resolved on the flow cytometer available in their lab or facility. Although high-resolution flow cytometers are available and are being used for EV analysis, the use of these instruments for studying EVs requires careful use and validation by experienced small-particle flow cytometrists, beyond the scope of this chapter. Shown here is a method for using streptavidin-coated beads to capture biotinylated antibodies, and stain the bead-bound EVs with directly conjugated antibodies.
View Article and Find Full Text PDFExtracellular vesicles (EV), including exosomes and microvesicles, are nano-sized intercellular communication vehicles that participate in a multitude of physiological processes. Due to their biological properties, they are also promising candidates for the systemic delivery of therapeutic compounds, such as cytokines, chemotherapeutic drugs, siRNAs and viral vectors. However, low EV production yield and rapid clearance of administered EV by liver macrophages limit their potential use as therapeutic vehicles.
View Article and Find Full Text PDFHypoxia is a common feature in solid tumors that has been implicated in immune evasion. Previous studies from our group have shown that hypoxia upregulates the co-stimulatory receptor CD137 on activated T lymphocytes and on vascular endothelial cells. In this study, we show that exposure of mouse and human tumor cell lines to hypoxic conditions (1% O) promotes CD137 transcription.
View Article and Find Full Text PDFUnlabelled: Weak and ineffective antitumor cytotoxic T lymphocyte (CTL) responses can be rescued by immunomodulatory mAbs targeting PD-1 or CD137. Using Batf3(-/-) mice, which are defective for cross-presentation of cell-associated antigens, we show that BATF3-dependent dendritic cells (DC) are essential for the response to therapy with anti-CD137 or anti-PD-1 mAbs. Batf3(-/-) mice failed to prime an endogenous CTL-mediated immune response toward tumor-associated antigens, including neoantigens.
View Article and Find Full Text PDFHelper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression.
View Article and Find Full Text PDFA current pressing need in cancer immunology is the development of preclinical model systems that are immunocompetent for the study of human tumors. Here, we report the development of a humanized murine model that can be used to analyze the pharmacodynamics and antitumor properties of immunostimulatory monoclonal antibodies (mAb) in settings where the receptors targeted by the mAbs are expressed. Human lymphocytes transferred into immunodeficient mice underwent activation and redistribution to murine organs, where they exhibited cell-surface expression of hCD137 and hPD-1.
View Article and Find Full Text PDFCancer immunotherapy is undergoing significant progress due to recent clinical successes by refined adoptive T-cell transfer and immunostimulatory monoclonal Ab (mAbs). B16F10-derived OVA-expressing mouse melanomas resist curative immunotherapy with either adoptive transfer of activated anti-OVA OT1 CTLs or agonist anti-CD137 (4-1BB) mAb. However, when acting in synergistic combination, these treatments consistently achieve tumor eradication.
View Article and Find Full Text PDFImmunostimulatory monoclonal antibodies can be given in combinations, hence modulating the activity of 2 or more receptors of the immune system. Some of these combinations have been shown to synergize at the elicitation of therapeutically relevant immune responses in transgenic mice developing spontaneous, oncogene-driven tumors, including multifocal hepatocellular carcinomas expressing ovalbumin as a surrogate tumor-associated antigen.
View Article and Find Full Text PDFThe immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice.
View Article and Find Full Text PDFPurpose: Immunostimulatory monoclonal antibodies (ISmAb) that unleash antitumor immune responses are showing efficacy in cancer clinical trials. Anti-B7-H1 (PD-L1) monoclonal antibodies (mAb) block a critical inhibitory pathway in T cells, whereas anti-CD137 and OX40 mAbs provide T-cell costimulation. A combination of these ISmAbs (anti-CD137 + anti-OX40 + anti-B7-H1) was tested using a transgenic mouse model of multifocal and rapidly progressing hepatocellular carcinoma, in which c-myc drives transformation and cytosolic ovalbumin (OVA) is expressed in tumor cells as a model antigen.
View Article and Find Full Text PDFImmunotherapies often permit combinations to increase efficacy. Two approaches are currently leading our field: adoptive therapy with T cells transfected with chimeric antigen receptors and monoclonal antibodies blocking the PD-1/PD-L1 (B7-H1) axis. In this issue of Clinical Cancer Research, preclinical evidence for a synergistic combination of such approaches is reported.
View Article and Find Full Text PDFAgonist anti-CD137 (4-1BB) mAbs enhance CD8-mediated antitumor immunity. Agonist anti-human CD137 mAbs binding to four distinct epitopes on the CD137 glycoprotein costimulated T cell activation irrespective of the engaged epitope or its interference with CD137L binding. CD137 perturbation with all these agonist mAbs resulted in Ag and Ab internalization toward an endosomal vesicular compartment.
View Article and Find Full Text PDFTherapy for cancer can be achieved by artificially stimulating antitumor T and natural killer (NK) lymphocytes with agonist monoclonal antibodies (mAb). T and NK cells express several members of the TNF receptor (TNFR) family specialized in delivering a costimulatory signal on their surface. Engagement of these receptors is typically associated with proliferation, elevated effector functions, resistance to apoptosis, and differentiation into memory cells.
View Article and Find Full Text PDFApolipoprotein A-I (Apo A-I) is a major component of high density lipoproteins (HDL) that transport cholesterol in circulation. We have constructed an expression plasmid encoding a chimeric molecule encompassing interleukin-15 (IL-15) and Apo A-I (pApo-hIL15) that was tested by hydrodynamic injections into mice and was co-administered with a plasmid encoding the sushi domain of IL-15Rα (pSushi) in order to enhance IL-15 trans-presentation and thereby bioactivity. The pharmacokinetics of the Apo A-I chimeric protein were much longer than non-stabilized IL-15 and its bioactivity was enhanced in combination with IL-15Rα Sushi.
View Article and Find Full Text PDFBackground: Treatment with agonist anti-CD137 (4-1BB) immunostimulatory monoclonal antibodies elicits complete tumor regressions in a number of transplanted hematological and solid malignancies in mice. Rejection is mainly dependent on cytotoxic T lymphocytes (CTL) and IFNγ, although a role for NK cells and dendritic cells has been observed in some tumor models. Rejection of EG7-derived thymomas has been shown to be CTL-dependent but not NK-dependent.
View Article and Find Full Text PDF