We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1 receptor. In equilibrium binding assays, the Org compounds significantly increased the binding of the CB1 receptor agonist [3H]CP 55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol], indicative of a positively cooperative allosteric effect. The same compounds caused a significant, but incomplete, decrease in the specific binding of the CB1 receptor inverse agonist [3H]SR 141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride], indicative of a limited negative binding cooperativity.
View Article and Find Full Text PDFThe lipase-catalyzed kinetic resolution of (R/S)-3-phenylbutyric acid 2 using solid-supported cyclohexane-1,3-dione (CHD) 6 is described. In each case the predominant enantiomer observed, after cleavage from the resin, was (R)-(-)-3-phenylbutyric acid (R)-2 (ee > 99%) rather than the expected (S)-enantiomer of 2. This observation is in contrast to the fact that Chromobacterium viscosum lipase shows high enantiospecificity for the (S)-enantiomer in the corresponding solution-phase hydrolysis reactions.
View Article and Find Full Text PDF[reaction: see text] A three-step synthesis of cyclohexane-1,3-dione (CHD) resin 6 on polystyrene resin is described. Resin 6 was used to prepare an amide library of high purity by microwave-assisted serial "capture and release" and can be recycled for this purpose. High-loading CHD resin 10 was also shown to scavenge allyl cations in solution.
View Article and Find Full Text PDF