Background: Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution.
View Article and Find Full Text PDFFluorescent protein-based FRET is a powerful method for visualizing protein-protein interactions and biochemical reactions in living cells. It can be difficult, however, to avoid photobleaching when observing fluorescent cells under the microscope, especially those expressing CFP. We compared the sensitivity of two protein-based FRET pairs to light-induced fluorescence changes in the donor, on FRET determination by fluorescence lifetime imaging microscopy (FLIM).
View Article and Find Full Text PDFWe present a multi trap optical tweezes system that enables to generate two-dimensional dynamical configurations of focal spot where the trapping force of each element of the pattern can be individually changed. Force gradients in the pN range can be generated on a micrometer scale.
View Article and Find Full Text PDF