The rate of sensory update is one of the most important parameters of any sensory system. The acquisition rate of most sensory systems is fixed and has been optimized by evolution to the needs of the animal. Echolocating bats have the ability to adjust their sensory update rate which is determined by the intervals between emissions - the inter-pulse intervals (IPI).
View Article and Find Full Text PDFBackground: Reproduction entails substantial demands throughout its distinct stages. The mammalian gestation period imposes various energetic costs and movement deficits, but its effects on the sensory system are poorly understood. Bats rely heavily on active sensing, using echolocation to forage in complete darkness, or when lighting is uncertain.
View Article and Find Full Text PDFBackground: As well known to any photographer, controlling the "field of view" offers an extremely powerful mechanism by which to adjust target acquisition. Only a few natural sensory systems can actively control their field of view (e.g.
View Article and Find Full Text PDFBackground: Various mammalian species emit ultrasonic vocalizations (USVs), which reflect their emotional state and mediate social interactions. USVs are usually analyzed by manual or semi-automated methodologies that categorize discrete USVs according to their structure in the frequency-time domains. This laborious analysis hinders the effective use of USVs as a readout for high-throughput analysis of behavioral changes in animals.
View Article and Find Full Text PDFBackground: Learning to adapt to changes in the environment is highly beneficial. This is especially true for echolocating bats that forage in diverse environments, moving between open spaces to highly complex ones. Bats are known for their ability to rapidly adjust their sensing according to auditory information gathered from the environment within milliseconds but can they also benefit from longer adaptive processes? In this study, we examined adult bats' ability to slowly adapt their sensing strategy to a new type of environment they have never experienced for such long durations, and to then maintain this learned echolocation strategy over time.
View Article and Find Full Text PDFSegregating signal from noise is one of the most fundamental problems shared by all biological and human-engineered sensory systems. In echolocating bats that search for small objects such as tiny insects in the presence of large obstacles (e.g.
View Article and Find Full Text PDFAnimal acoustic communication research depends on our ability to record the vocal behaviour of different species. Only rarely do we have the opportunity to continuously follow the vocal behaviour of a group of individuals of the same species for a long period of time. Here, we provide a database of Egyptian fruit bat vocalizations, which were continuously recorded in the lab in several groups simultaneously for more than a year.
View Article and Find Full Text PDFAnimal vocal communication is often diverse and structured. Yet, the information concealed in animal vocalizations remains elusive. Several studies have shown that animal calls convey information about their emitter and the context.
View Article and Find Full Text PDFThe evolution of human language is shrouded in mystery as it is unparalleled in the animal kingdom. Whereas vocal learning is crucial for the development of speech in humans, it seems rare among nonhuman animals. Songbirds often serve as a model for vocal learning, but the lack of a mammalian model hinders our quest for the origin of this capability.
View Article and Find Full Text PDF