Publications by authors named "Mootaz Eldib"

Background: Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty.

Methods: This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail.

View Article and Find Full Text PDF

Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall.

View Article and Find Full Text PDF

Background: Yttrium-90 (Y) radioembolization involves the intra-arterial delivery of radioactive microspheres to treat hepatic malignancies. Though this therapy involves careful pre-treatment planning and imaging, little is known about the precise location of the microspheres once they are administered. Recently, there has been growing interest post-radioembolization imaging using positron-emission tomography (PET) for quantitative dosimetry and identifying lesions that may benefit from additional salvage therapy.

View Article and Find Full Text PDF

Objectives: The authors sought to develop combined positron emission tomography (PET) dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) to quantify plaque inflammation, permeability, and burden to evaluate the efficacy of a leukotriene A4 hydrolase (LTA4H) inhibitor in a rabbit model of atherosclerosis.

Background: Multimodality PET/MRI allows combining the quantification of atherosclerotic plaque inflammation, neovascularization, permeability, and burden by combined F-fluorodeoxyglucose (F-FDG) PET, DCE-MRI, and morphological MRI. The authors describe a novel, integrated PET-DCE/MRI protocol to noninvasively quantify these parameters in aortic plaques of a rabbit model of atherosclerosis.

View Article and Find Full Text PDF

Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study.

View Article and Find Full Text PDF

Objectives: The goal of this study was to develop and validate a noninvasive imaging tool to visualize the in vivo behavior of high-density lipoprotein (HDL) by using positron emission tomography (PET), with an emphasis on its plaque-targeting abilities.

Background: HDL is a natural nanoparticle that interacts with atherosclerotic plaque macrophages to facilitate reverse cholesterol transport. HDL-cholesterol concentration in blood is inversely associated with risk of coronary heart disease and remains one of the strongest independent predictors of incident cardiovascular events.

View Article and Find Full Text PDF

With the introduction of clinical PET/magnetic resonance (MR) systems, novel attenuation correction methods are needed, as there are no direct MR methods to measure the attenuation of the objects in the field of view (FOV). A unique challenge for PET/MR attenuation correction is that coils for MR data acquisition are located in the FOV of the PET camera and could induce significant quantitative errors. In this review, current methods and techniques to correct for the attenuation of a variety of coils are summarized and evaluated.

View Article and Find Full Text PDF

The purpose of this study was to develop and validate low dose (18)F-FDG-PET acquisition protocols for detection of inflamed carotid plaques specifically for simultaneous PET/MR imaging. The hypothesis was that increasing the duration of the PET acquisition to match that of the MR acquisition might allow for the use of lower levels of the radiotracer, while preserving quantification and image quality. Seven subjects were scanned twice at least one week apart on a simultaneous PET/MR scanner using either the standard clinical dose of (18)F-FDG (373 ± 63 MBq) for 8 minutes or a low dose (93 ± 17 MBq) for 75 minutes.

View Article and Find Full Text PDF

Current PET/MR systems employ segmentation of MR images and subsequent assignment of empirical attenuation coefficients for quantitative PET reconstruction. In this study we examine the differences in the quantification of (18)F-FDG uptake in the carotid arteries between PET/MR and PET/CT scanners. Five comparisons were performed to asses differences in PET quantification: i) PET/MR MR-based AC (MRAC) versus PET/MR CTAC, ii) PET/MR MRAC versus PET/CT, iii) PET/MR MRAC with carotid coil versus PET/MR MRAC without coil, iv) PET/MR MRAC scan 2 versus PET/MR MRAC scan 1, and v) PET/MR CTAC versus PET/CT.

View Article and Find Full Text PDF

The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil.

View Article and Find Full Text PDF

Errors in quantification of carotid positron emission tomography (PET) in simultaneous PET/magnetic resonance (PET/MR) imaging when not incorporating bone in MR-based attenuation correction (MRAC) maps, and possible solutions, remain to be fully explored. In this study, we demonstrated techniques to improve carotid vascular PET/MR quantification by adding a bone tissue compartment to MRAC maps and deriving continuous Dixon-based MRAC (MRACCD) maps. We demonstrated the feasibility of applying ultrashort echo time-based bone segmentation and generation of continuous Dixon MRAC to improve PET quantification on five subjects.

View Article and Find Full Text PDF

Atherosclerosis is a prevalent cardiovascular disease marked by inflammation and the formation of plaque within arterial walls. As the disease progresses, there is an increased risk of major cardiovascular events. Owing to the nature of atherosclerosis, it is imperative to develop methods to further understand the physiological implications and progression of the disease.

View Article and Find Full Text PDF

Introduction: Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another.

View Article and Find Full Text PDF

Cytoplasmic transport of large molecules such as plasmid DNA (pDNA) has been shown to increase when cells are subjected to mild levels of cyclic stretch for brief periods. In the case of pDNA, this is in part due to the increased active transport of pDNA along stabilized, acetylated microtubules in the cytoplasm, whose levels are increased in response to stretch. It also has been shown that disruption of the dense actin network leads to increased pDNA and macromolecule diffusion as well.

View Article and Find Full Text PDF

Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair.

View Article and Find Full Text PDF