Publications by authors named "Mooslehner K"

Aim: We hypothesised that some of the genetic risk for gestational diabetes (GDM) is due to the fetal genome affecting maternal glucose concentrations. Previously, we found associations between fetal IGF2 gene variants and maternal glucose concentrations in late pregnancy.

Methods: In the present study, we tested associations between SNP alleles from 15 fetal imprinted genes and maternal glucose concentrations in late pregnancy in the Cambridge Baby Growth and Wellbeing cohorts (1160 DNA trios).

View Article and Find Full Text PDF

Context: Low serum IGF-1 levels have been linked to increased risk for development of type 2 diabetes. However, the physiological role of IGF-1 in glucose metabolism is not well characterized.

Objective: Our objective was to explore glucose and lipid metabolism associated with variations in serum IGF-1 levels.

View Article and Find Full Text PDF

Partial androgen insensitivity syndrome (PAIS) is associated with impaired male genital development and can be transmitted through mutations in the androgen receptor (AR). The aim of this study is to develop a cell model suitable for studying the impact AR mutations might have on AR interacting proteins. For this purpose, male genital development relevant mouse cell lines were genetically modified to express a tagged version of wild-type AR, allowing copurification of multiprotein complexes under native conditions followed by mass spectrometry.

View Article and Find Full Text PDF

During embryogenesis, the development of the male genital is dependent on androgens. Their actions are mediated by the androgen receptor (AR), which functions as a transcription factor. To identify AR coregulators that support AR action during the critical time window of androgen-dependent development in the genital tubercle of male mice, we performed yeast two-hybrid screenings with cDNA libraries of genital tubercles from male mouse embryos using human AR as bait.

View Article and Find Full Text PDF

The vesicular monoamine transporter type 2 (VMAT2) packages pre-synaptic monoamines into vesicles. Previously, we generated mice hypomorphic for the VMAT2 gene (Slc18a2), which results in a approximately 95% reduction in VMAT2 protein, disrupted vesicular storage, severe depletion of striatal dopamine and mice with moderate motor behaviour deficits. Dopamine released from mid-brain dopamine neurons acts on post-synaptic type 1 (D1) and 2 (D2) receptors located on striatal medium spiny neurons to initiate a signalling cascade that leads to altered transcription factor activity, gene expression and neuronal activity.

View Article and Find Full Text PDF

The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry.

View Article and Find Full Text PDF

We have created a transgenic mouse with a hypomorphic allele of the vesicular monoamine transporter 2 (Vmat2) gene by gene targeting. These mice (KA1) have profound changes in monoamine metabolism and function and survive into adulthood. Specifically, these animals express very low levels of VMAT2, an endogenous protein which sequesters monoamines intracellularly into vesicles, a process that, in addition to being important in normal transmission, may also act to keep intracellular levels of the monoamine neurotransmitters below potentially toxic thresholds.

View Article and Find Full Text PDF

A novel mouse gene, associated with the enhancer-trap mutation TKZ736, has been cloned and sequenced. It encodes a polyspecific transmembrane transporter with 12 putative transmembrane domains, that shares significant homology with the mouse organic cation transporter 1 (Oct1/Slc22a1) called Lx1. Like Oct1/Slc22a1/Lx1, this gene maps to the proximal part of Chromosome (Chr) 17, but shows a different expression pattern from Oct1/Slc22a1/Lx1.

View Article and Find Full Text PDF

The genomic structure of a human vesicle monoamine transporter, type-2 (hVMAT2) was determined from two overlapping cosmids, phVMAT2-cos1 and phVMT2-cos2, spanning more than 35 kb. The hVMAT2 open reading frame is encoded by 16 exons, with translation initiation and termination in exon 2 and exon 16, respectively. Several potential binding sites for transcriptional regulatory factors, including a cAMP response element (CRE) were identified in the 5'-upstream region of the gene.

View Article and Find Full Text PDF

The Mov-10 mouse strain was derived by infection of preimplantation embryos with the Moloney murine leukemia virus and carries one copy of the provirus in its germ line. Here we show that the provirus has integrated into an evolutionarily conserved gene that can code for a protein of 110 kDa containing the three consensus elements characteristic for GTP-binding proteins. The Mov-10 locus was expressed in a variety of cell types, including embryonal carcinoma and embryonic stem cells.

View Article and Find Full Text PDF

Transcription of cellular sequences flanking proviral insertion sites was studied in several Mov mouse strains, each of which carried one copy of the Moloney murine leukemia virus in its germ line. In three out of five randomly chosen Mov strains, the provirus had integrated in the vicinity of DNA regions transcribed in the embryonal stem cell line CCE and the embryonal carcinoma cell line F9. Assuming that CCE and F9 cells are developmentally equivalent to the early embryonic cells that were infected to establish the Mov strains, our results suggest that retroviruses integrate preferentially into actively transcribed DNA regions.

View Article and Find Full Text PDF

In the Mov13 mouse mutant, transcription of the alpha 1 (1) collagen gene is blocked by a retroviral insert in the first intron. We now report that teeth derived from homozygous embryos produce a dentin layer containing normal amounts of collagen 1. In situ hybridization and RNAase protection experiments indicate that the mutant allele is efficiently transcribed in odontoblasts, in contrast to other cell types.

View Article and Find Full Text PDF