Publications by authors named "Moonsup Lee"

Motile cilia are critical structures that regulate early embryonic development and tissue homeostasis through synchronized ciliary motility. The formation of motile cilia is dependent on precisely controlled sequential processes including the generation, migration, and docking of centrioles/basal bodies as well as ciliary growth. Using the published proteomics data from various organisms, we identified proliferation-associated 2G4 as a novel regulator of ciliogenesis.

View Article and Find Full Text PDF

Modified asphalt binders are still considered important in asphalt pavement. However, the comprehensive use of various modifiers is limited due to storage stability issues. Moreover, there is a scarcity of detailed analyses regarding the degree of separation for asphalt binders among each method despite the utilization of various methods to assess the storage stability of binders.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of a two-step modification process involving kaolinite and cloisite Na+ on the storage stability of rubberized binders. The process involved the manual combination of virgin binder PG 64-22 with crumb rubber modifier (CRM), which was heated to condition it. The preconditioned rubberized binder was then modified for two hours at a high speed of 8000 rpm using wet mixing.

View Article and Find Full Text PDF

Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity.

View Article and Find Full Text PDF

The study presents an experimental evaluation to improve the resistivity of binders with "Styrene-Butadiene-Styrene" (SBS) and "Processed oil" by studying the physical properties, rheology, and cracking. For this experiment, PG 64-22 was mixed with SBS at different percentages of 5%, 10%, and 15% by weight of the original binder with two processed oil contents of 6% and 12% by weight of the binder. Laboratory tests have been conducted at various high, medium, and low temperature ranges to evaluate their properties.

View Article and Find Full Text PDF

Crumb rubber modifier (CRM) binders easily suffer from instability at high temperatures, with many suggestions being developed to evaluate their storage stability. However, much uncertainty around CRM binders still exists regarding the relationship between mixing methods and experiments in order to calculate the separation index. In this study, a laboratory investigation into how CRM binders behave regarding storage stability using different mixing methods and experiments was conducted.

View Article and Find Full Text PDF

Apical constriction is a cell shape change critical to vertebrate neural tube closure, and the contractile force required for this process is generated by actin-myosin networks. The signaling cue that instructs this process has remained elusive. Here, we identify Wnt4 and the transmembrane ephrinB2 protein as playing an instructive role in neural tube closure as members of a signaling complex we termed WERDS (Wnt4, EphrinB2, Ror2, Dishevelled (Dsh2), and Shroom3).

View Article and Find Full Text PDF

Crumb rubber binder with thermoplastic polyurethane (TPU) has been experimented with to characterize the performance properties considering the workability, rutting, fatigue cracking and cracking resistance at low temperatures depending on the temperatures and aging states. Physical and rheological properties were evaluated to proceed with the study by applying Superpave asphalt binder testing and multi-stress creep recovery (MSCR). Based on the targeted experiments, the binder samples were produced at three aging states (original, short-term aged and long-term aged) using a rolling thin film oven (RTFO) and pressure aging vessel (PAV).

View Article and Find Full Text PDF

This study investigates the effectiveness of processed oil in the modification of PG 64-22 and PG 76-22 by assessing their physical and rheological properties, and multiple comparison was conducted between the two binders. The base binders PG 64-22 and PG 76-22 were blended with processed oil at four different percentages of contents (3%, 6%, 9% and 12% by the weight of the binder) and compared with the control binder in each test. The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures.

View Article and Find Full Text PDF

The Zic family of zinc finger transcription factors plays a critical role in multiple developmental processes. Using loss-of-function studies, we find that Zic5 is important for the differentiation of retinal pigmented epithelium (RPE) and the rod photoreceptor layer through suppressing Hedgehog (Hh) signaling. Further, Zic5 interacts with the critical Hh signaling molecule, Gli3, through the zinc finger domains of both proteins.

View Article and Find Full Text PDF

The study describes the laboratory assessment (physical and rheological properties) of the binders (PG 64-22 and PG 76-22) modified with Styrene Butadiene Rubber (SBR), and a comprehensive comparison between these two modified binder types. PG 64-22 and PG 76-22 were used as base binders. Both of the base binders were blended with SBR at four different percentages of content (0%, 4%, 6%, and 8% by the weight of the binder).

View Article and Find Full Text PDF

Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis.

View Article and Find Full Text PDF

Rab11 family-interacting protein 5 (Rab11fip5) is an adaptor protein that binds to the small GTPase Rab11, which has an important function in endosome recycling and trafficking of cellular proteins to the plasma membrane. Rab11fip5 is involved in many cellular processes, such as cytoskeleton rearrangement, iron uptake and exocytosis in neuroendocrine cells, and is also known as a candidate gene for autism-spectrum disorder. However, the role of Rab11fip5 during early embryonic development is not clearly understood.

View Article and Find Full Text PDF

The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques.

View Article and Find Full Text PDF

Sproutys are negative regulators of the Ras/Raf/MAPK signaling pathway and involved in regulation of organogenesis, differentiation, cell migration and proliferation. Although the function of Sproutys have been extensively studied during embryonic development, their role and mode of action during eye formation in vertebrate embryonic development is still unknown. Here we show that Xenopus sprouty2 is expressed in the optic vesicle at late neurula stage and knockdown of Sprouty2 prevents retinal progenitors from populating the retina, which in turn gives rise to small eyes.

View Article and Find Full Text PDF

Cilia are critical for proper embryonic development and maintaining homeostasis. Although extensively studied, there are still significant gaps regarding the proteins involved in regulating ciliogenesis. Using the embryo, we show that Dishevelled (Dvl), a key Wnt signaling scaffold that is critical to proper ciliogenesis, interacts with Drg1 (developmentally regulated GTP-binding protein 1).

View Article and Find Full Text PDF

Although Eph-ephrin signalling has been implicated in the migration of cranial neural crest (CNC) cells, it is still unclear how ephrinB transduces signals regulating this event. We provide evidence that TBC1d24, a putative Rab35-GTPase activating protein (Rab35 GAP), complexes with ephrinB2 via the scaffold Dishevelled (Dsh) and mediates a signal affecting contact inhibition of locomotion (CIL) in CNC cells. Moreover, we found that, in migrating CNC, the interaction between ephrinB2 and TBC1d24 negatively regulates E-cadherin recycling in these cells via Rab35.

View Article and Find Full Text PDF

embryos are an established model for studying kidney development. The nephron structure and genetic pathways that regulate nephrogenesis are conserved between and humans, allowing for the study of human disease-causing genes. embryos are also amenable to large-scale screening, but studies of kidney disease-related genes have been impeded because assessment of kidney development has largely been limited to examining fixed embryos.

View Article and Find Full Text PDF

Dishevelled (DVL) proteins serve as crucial regulators that transduce canonical Wnt signals to the GSK3β-destruction complex, resulting in the stabilization of β-catenin. Emerging evidence underscores the nuclear functions of DVLs, which are critical for Wnt/β-catenin signaling. However, the mechanism underlying DVL nuclear localization remains poorly understood.

View Article and Find Full Text PDF

Although the canonical Wnt pathway and β-catenin have been extensively studied, less is known about the role of p120-catenin (also known as δ1-catenin) in the nuclear compartment. Here, we report that p120-catenin binds and negatively regulates REST and CoREST (also known as Rcor1), a repressive transcriptional complex that has diverse developmental and pathological roles. Using mouse embryonic stem cells (mESCs), mammalian cell lines, Xenopus embryos and in vitro systems, we find that p120-catenin directly binds the REST-CoREST complex, displacing it from established gene targets to permit their transcriptional activation.

View Article and Find Full Text PDF

Members of the plakophilin-catenin sub-family (Pkp-1, -2, and -3) facilitate the linkage of desmosome junctional components to each other (e.g. desmosomal cadherins to desmoplakin) and the intermediate-filament cytoskeleton.

View Article and Find Full Text PDF

Fine control of Wnt signaling is essential for various cellular and developmental decision-making processes. However, deregulation of Wnt signaling leads to pathological consequences, one of which is cancer. Here, we identify a function of PAF, a component of translesion DNA synthesis, in modulating Wnt signaling.

View Article and Find Full Text PDF

The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus.

View Article and Find Full Text PDF

The Wnt pathways contribute to many processes in cancer and development, with β-catenin being a key canonical component. p120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ- and zinc-finger-domain-containing transcription factor Kaiso. We have identified the kinase Dyrk1A as a component of the p120-catenin-Kaiso trajectory of the Wnt pathway.

View Article and Find Full Text PDF

The novel adaptor protein Kazrin associates with multifunctional entities including p120-subfamily members (ARVCF-, delta-, and p0071-catenin). Critical contributions of Kazrin to development or homeostasis are indicated with respect to ectoderm formation, integrity and keratinocyte differentiation, whereas its presence in varied tissues suggests broader roles. We find that Kazrin is maternally loaded, is expressed across development and becomes enriched in the forming head.

View Article and Find Full Text PDF