Publications by authors named "Moonsuk Choi"

Objectives: Therapeutic drug monitoring (TDM) of anti-tuberculosis (TB) drugs is important for proper treatment of TB. Dried blood spots (DBSs) are widely used for TDM because of their several advantages. Rifampicin and pyrazinamide assays with DBSs have already been developed.

View Article and Find Full Text PDF

Zinc sulfide (ZnS) thin film was deposited on the flexible polyethylene-terephtalate (PET) polymer substrate by radio frequency (RF) magnetron sputtering system. ZnS film has a critical thickness range affecting crystal structure where it shows preferred orientation with intensity peak of X-ray diffractometer at 28.4 degrees for ZnS thinner than 200 nm while hexagonal wurtzite and cubic zinc-blend (101) are co-existed for film thicker than 200 nm.

View Article and Find Full Text PDF

Cu2ZnSnS4 (CZTS) thin film applicable to an absorber material in compound thin film solar cells was deposited by a single quaternary sputtering target containing four components--Cu, Zn, Sn, and S-and its material properties were investigated. A single quaternary sputtering target was fabricated by sequential powder mixing/ball milling, pressure moulding, and a sintering process. An as-fabricated pellet or sputter target sintered at 500 degrees C-700 degrees C showed relevant peaks associated with CZTS phases.

View Article and Find Full Text PDF

Neuroinflammation, characterized by activation of microglia and expression of major inflammatory mediators, contributes to neuronal damage in addition to acute and chronic central nervous system (CNS) disease progression. The present study investigated the immune modulatory effects of ginsenoside Rg3, a principle active ingredient in Panax ginseng, on pro-inflammatory cytokines and microglia activation in brain tissue induced by systemic lipopolysaccharide (LPS) treatment in C57BL/6 mice. Systemic LPS treatment induces immediate microglia activation in the brain.

View Article and Find Full Text PDF

Senescence marker protein-30 (SMP-30) is a candidate enzyme that can function as a catalytic bioscavenger of organophosphorus (OP) nerve agents. We purified SMP-30 from mouse (Mo) liver and compared its hydrolytic activity towards various esters, lactones, and G-type nerve agents with that of human paraoxonase1 (Hu PON1) and squid diisopropylfluorophosphatase (DFPase). All three enzymes contain one or two metal ions in their active sites and fold into six-bladed β-propeller structures.

View Article and Find Full Text PDF

Senescence marker protein-30 (SMP30) has been reported to hydrolyze diisopropyl fluorophosphate (DFP), a surrogate compound of chemical warfare nerve agents. Thus, SMP30 has the potential to be useful as a prophylactic against chemical warfare nerve agent toxicity. Our efforts to generate human SMP30 in bacteria using a variety of expression vectors invariably resulted in insoluble and inactive preparations.

View Article and Find Full Text PDF

Objective: Sulfur mustard is a well-known blistering chemical warfare agent that has been investigated for its toxicological mechanisms and an efficacious antidote. Since sulfur mustard injury involves dermal:epidermal separation, proteolytic enzymes were suspected to be involved for this separation and eventual blister development. Therefore, protease inhibitors could be of therapeutic utility against sulfur mustard injury.

View Article and Find Full Text PDF

Objective: Sulfur mustard is a well-known blistering chemical warfare agent that has been investigated for its toxicological mechanisms and an efficacious antidote. Since sulfur mustard injury involves dermal:epidermal separation, proteolytic enzymes were suspected to be involved for this separation and eventual blister development. Therefore, protease inhibitors could be of therapeutic utility against sulfur mustard injury.

View Article and Find Full Text PDF

In the majority of neurodegenerative storage disorders, neuronal death in the brain is followed by infiltration of phagocytic cells (e.g. activated microglia, astroglia and macrophages) for the efficient removal of cell corpses.

View Article and Find Full Text PDF

Uteroglobin (UG) is a pleiotropic protein with anti-inflammatory properties. Mice rendered genetically incapable of expressing UG develop a form of renal disease that closely resembles human IgA nephropathy (IgAN). Furthermore, a single nucleotide polymorphism in the UG gene (A38G) has been associated with rapid progression of human IgAN.

View Article and Find Full Text PDF

Cellular migration and invasion are critical for important biological processes including cancer metastasis. We previously reported that uteroglobin (UG), a multifunctional secreted protein, binds to several cell types inhibiting migration and invasion [G.C.

View Article and Find Full Text PDF

Numerous proteins undergo modification by palmitic acid (S-acylation) for their biological functions including signal transduction, vesicular transport and maintenance of cellular architecture. Although palmitoylation is an essential modification, these proteins must also undergo depalmitoylation for their degradation by lysosomal proteases. Palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme, cleaves thioester linkages in S-acylated proteins and removes palmitate residues facilitating the degradation of these proteins.

View Article and Find Full Text PDF

Uteroglobin (UG), the founding member of the Secretoglobin superfamily, is a potent anti-inflammatory protein constitutively expressed at a high level in the airway epithelia of all mammals. We previously reported that the lungs of UG-knock-out (UG-KO) mice express elevated levels of Th2 cytokines (e.g.

View Article and Find Full Text PDF

We investigated the prevalence and characteristics of intrapulmonary shunt using contrast echocardiography with harmonic imaging in 130 liver transplant candidates. We found a high prevalence of intrapulmonary shunts and a significant correlation between the degree of intrapulmonary shunt and the Child-Pugh classification score.

View Article and Find Full Text PDF

Uteroglobin (UG) is an antiinflammatory protein secreted by the epithelial lining of all organs communicating with the external environment. We reported previously that UG-knockout mice manifest exaggerated inflammatory response to allergen, characterized by increased eotaxin and Th2 cytokine gene expression, and eosinophil infiltration in the lungs. In this study, we uncovered that the airway epithelia of these mice also express high levels of cyclooxygenase (COX)-2, a key enzyme for the production of proinflammatory lipid mediators, and the bronchoalveolar lavage fluid (BALF) contain elevated levels of prostaglandin D2.

View Article and Find Full Text PDF

IFNs are a family of cytokines that alert the immune system against viral infections of host cells. The IFNs (IFN-alpha, IFN-beta, and IFN-gamma) interact with specific cellular receptors and stimulate the production of second messengers, leading to the expression of antiviral and immunomodulatory proteins. We report in this study that IFN-gamma stimulates the expression of a novel gene that encodes a protein with 30% amino acid sequence identity with uteroglobin, the founding member of the newly formed Secretoglobin (SCGB) superfamily.

View Article and Find Full Text PDF

The sphingolipid, ceramide, is a natural dietary constituent and a potent mediator of apoptosis. If left undegraded, it may induce apoptosis and cause disruption of cellular integrity. A potential mechanism to prevent ceramide-induced apoptosis in various organs may involve ceramidases that facilitate the degradation of ceramide.

View Article and Find Full Text PDF