Publications by authors named "Moonseob Jin"

We propose a snapshot spectroscopic ellipsometry and its applications for real-time thin-film thickness measurement. The proposed system employs an interferometric polarization-modulation module that can measure the spectroscopic ellipsometric phase for thin-film deposited on a substrate with a measurement speed of around 20 msec. It requires neither moving parts nor time dependent modulation devices.

View Article and Find Full Text PDF

A simple dynamic spectro-polarimeter based on a modified Michelson interferometric scheme is described. The proposed system can extract a spectral Stokes vector of a transmissive anisotropic object. Detail theoretical background is derived and experiments are conducted to verify the feasibility of the proposed novel snapshot spectro-polarimeter.

View Article and Find Full Text PDF

This paper describes a Stokes vector measurement method based on a snapshot polarization-sensitive spectral interferometry. We measure perpendicular linearly polarized complex wave information of an anisotropic object in the spectral domain from which an accurate Stokes vector can be extracted. The proposed Stokes vector measurement method is robust to the object plane 3-D pose variation and external noise, and it provides a reliable snapshot solution in numerous spectral polarization-related applications.

View Article and Find Full Text PDF

This Letter describes a universal calibration theory by which conventional interferometry can be extended to vibration robust snapshot polarization-sensitive spectral reflectometry without any complicated optical components or active devices. Experiments for verifying the proposed calibration theory have been conducted by using a Michelson-interferometer-based normal incidence spectroellipsometric system, and also some key system design considerations for object 3D pose tolerant measurement capability have been drawn. The proposed solution enables us to extract the spectroscopic ellipsometric parameter Δ(k) of an anisotropic object within 10 ms with high accuracy.

View Article and Find Full Text PDF

Off-axis digital holography generally uses a 2D-FFT based spatial filtering method to extract the complex object wave from an off-axis hologram. In this paper, we describe a novel single exposure complex object wave extraction method which can provide a faster solution than the FFT based spatial filtering approach while maintaining the reconstructed phase image quality. And also, we show that the proposed direct filtering scheme can provide more robust filtering capability to the off-axis spatial carrier frequency variation than the spatial filtering method.

View Article and Find Full Text PDF