Publications by authors named "Moonnoh R Lee"

Background: Adenosine signaling has been implicated in several neurological and psychiatric disorders. Previously, we found that astrocytic excitatory amino acid transporter 2 (EAAT2) and aquaporin 4 (AQP4) are downregulated in the striatum of mice lacking type 1 equilibrative nucleoside transporter (ENT1).

Methods: To further investigate the gene expression profile in the striatum, we preformed Illumina Mouse Whole Genome BeadChip microarray analysis of the caudate-putamen (CPu) and nucleus accumbens (NAc) in ENT1 null mice.

View Article and Find Full Text PDF

Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling.

View Article and Find Full Text PDF

Studies have demonstrated that deletion of equilibrative nucleoside transporter 1 (ENT1) is associated with reduced glutamate transporter 1 (GLT1) level, and consequently increased ethanol intake. In this study, we measured changes in GLT1 and ENT1 levels in prefrontal cortex (PFC), and nucleus accumbens (NAc) core and shell associated with alcohol drinking in alcohol-preferring (P) rats. We examined, then, whether ceftriaxone (CEF) would affect both GLT1 and ENT1 levels in these brain regions.

View Article and Find Full Text PDF

Adenosine signaling has been implicated in the pathophysiology of many psychiatric disorders including alcoholism. Striatal adenosine A2A receptors (A2AR) play an essential role in both ethanol drinking and the shift from goal-directed action to habitual behavior. However, direct evidence for a role of striatal A2AR signaling in ethanol drinking and habit development has not been established.

View Article and Find Full Text PDF

Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive.

View Article and Find Full Text PDF

The ongoing development of animal models of neurological and psychiatric disorders in combination with the development of advanced nuclear magnetic resonance (NMR) techniques and instrumentation has led to increased use of in vivo proton NMR spectroscopy ((1)H-MRS) for neurochemical analyses. (1)H-MRS is one of only a few analytical methods that can assay in vivo and longitudinal neurochemical changes associated with neurological and psychiatric diseases, with the added advantage of being a technique that can be utilized in both preclinical and clinical studies. In this review, recent progress in the use of (1)H-MRS to investigate animal models of neurological and psychiatric disorders is summarized with examples from the literature and our own work.

View Article and Find Full Text PDF

Acamprosate is clinically used to treat alcohol-dependent patients. While the molecular and pharmacological mechanisms of acamprosate remain unclear, it has been shown to regulate γ-aminobutyric acid (GABA) or glutamate levels in the cortex and striatum. To investigate the effect of acamprosate on brain metabolites in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), we employed in vivo 16.

View Article and Find Full Text PDF

Background: Mice lacking type 1 equilibrative nucleoside transporter (ENT1(-/-)) exhibit increased ethanol-preferring behavior compared with wild-type littermates. This phenotype of ENT1(-/-) mice appears to be correlated with increased glutamate levels in the nucleus accumbens (NAc). However, little is known about the downstream consequences of increased glutamate signaling in the NAc.

View Article and Find Full Text PDF

Adenosine-regulated glutamate signaling in astrocytes is implicated in many neurological and neuropsychiatric disorders. In this study, we examined whether adenosine A1 receptor regulates EAAT2 expression in astrocytes using pharmacological agents and siRNAs. We found that adenosine A1 receptor-specific antagonist DPCPX or PSB36 decreased EAAT2 expression in a dose-dependent manner.

View Article and Find Full Text PDF

Background: Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1.

View Article and Find Full Text PDF

In the central nervous system, adenosine and adenosine 5'-triphosphate (ATP) play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems, such as, GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter type 1 (ENT1).

View Article and Find Full Text PDF

Acamprosate is clinically used to treat alcoholism. However, the precise molecular functionality of acamprosate in the central nervous system remains unclear, although it is known to antagonize glutamate action in the brain. Since elevated glutamate signaling, especially in the nucleus accumbens (NAc), is implicated in several aspects of alcoholism, we utilized mice lacking type 1 equilibrative nucleoside transporter (ENT1), which exhibit increased glutamate levels in the NAc as well as increased ethanol drinking behaviors.

View Article and Find Full Text PDF

Background: Neurotensin receptors (NTS) regulate a variety of the biological functions of neurotensin (NT) in the central nervous system. Although NT and neurotensin receptors type 1 (NTS1) are implicated in some of the behavioral effects of ethanol, the functional roles of neurotensin receptors type 2 (NTS2) in ethanol intoxication and consumption remain unknown. Here, we investigated behavioral effects mediated by NTS2 in response to ethanol, which are implicated in ethanol consumption and preference, using NTS2 null mice.

View Article and Find Full Text PDF

Alcohol-sensitive type 1 equilibrative nucleotide transporter (ENT1) is known to regulate glutamate signaling in the striatum as well as ethanol intoxication. However, it was unclear whether altered extracellular glutamate levels in ENT1(-/-) mice contribute to ethanol-induced behavioral changes. Here we report that altered glutamate signaling in ENT1(-/-) mice is implicated in the ethanol-induced locomotion and ataxia by NMDA receptor antagonist, CGP37849.

View Article and Find Full Text PDF

Background: Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum.

Methods: We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes.

View Article and Find Full Text PDF

Neurotensin receptor type 1 (NTS1) is known to mediate a variety of biological functions of neurotensin (NT) in the central nervous system. In this study, we found that NTS1 null mice displayed decreased sensitivity to the ataxic effect of ethanol on the rotarod and increased ethanol consumption when given a free choice between ethanol and tap water containing bottles. Interestingly, the administration of NT69L, a brain-permeable NT analog, increased ethanol sensitivity in wild-type littermates but had no such effect in NTS1 null mice, suggesting that NTS1 contributes to NT-mediated ethanol intoxication.

View Article and Find Full Text PDF

Alcohol-sensitive type 1 equilibrative nucleoside transporter (ENT1) regulates adenosine-mediated glutamate neurotransmission in the brain. Our behavioral studies suggest that the diminished aversive effects of ethanol and the increased resistance to acute ethanol intoxication in mice lacking ENT1, could be related to increased voluntary ethanol self-seeking behavior. In addition, we found that ENT1 null mice were resistant to the ataxic effects of glutamate antagonists when tested on a rotarod.

View Article and Find Full Text PDF