Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis.
View Article and Find Full Text PDFTo define the regulatory role of Kruppel-like factor 2 (KLF2) during osteoblast (OB) differentiation of dental pulp-derived stem cell (DPSC)s, herein, we show that the levels of KLF2 and autophagy-related molecules were significantly increased in differentiated cells. Gain-of-function and loss-of-function approaches of KLF2 confirmed that KLF2 modulated autophagic and OB differentiation-related molecules. In addition, knockdown of the autophagic molecule (ATG7 or BECN1) in DPSCs resulted in reduced levels of KLF2 and OB differentiation-related molecules.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an immune-mediated inflammatory disease, and Krüppel-like factor 2 (KLF2) regulates immune cell activation and function. Herein, we show that in our experiments 50% global deficiency of KLF2 significantly elevated arthritic inflammation and pathogenesis, osteoclastic differentiation, matrix metalloproteinases (MMPs), and inflammatory cytokines in K/BxN serum-induced mice. The severities of RA pathogenesis, as well as the causative and resultant cellular and molecular factors, were further confirmed in monocyte-specific KLF2 deficient mice.
View Article and Find Full Text PDFAberrant epigenetic modifications are responsible for tumor development and cancer progression; however, readily reversible. Bioactive molecules from diets are promising to cure cancer by modulating epigenetic marks and changing immune response. These compounds specifically target the activity of DNMTs and HDACs to cure various human cancers.
View Article and Find Full Text PDFMixed-lineage leukaemia 1 (MLL1) enzyme plays major role in regulating genes associated with vertebrate development. Cell physiology and homeostasis is regulated by microRNAs in diverse microenvironment. In this investigation we have identified conserved miR-193a target sites within the 3'-UTR of MLL1 gene transcript.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2019
Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression.
View Article and Find Full Text PDFMacroautophagy/autophagy is involved in myeloid cellular repair, destruction, and osteoclast differentiation; conversely, KLF2 (kruppel-like factor 2 [lung]) regulates myeloid cell activation and differentiation. To investigate the specific role of KLF2 in autophagy, osteoclastic differentiation was induced in monocytes in presence or absence of the autophagy inhibitor 3-methyladenine (3-MA), KLF2 inducer geranylgeranyl transferase inhibitor (GGTI298), and adenoviral overexpression of KLF2. We found that the number of autophagic cells and multinucleated osteoclasts were significantly decreased in presence of 3-MA, GGTI298, and KLF2 overexpressed cells indicating involvement of KLF2 in these processes.
View Article and Find Full Text PDFMicrotubule associated tumor suppressor 1 (MTUS1) has been recognized as a tumor suppressor gene in multiple cancers. However, the molecular mechanisms underlying the regulation of MTUS1 are yet to be investigated. This study aimed to clarify the significance of DNA methylation in silencing MTUS1 expression.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2020
Osteoporosis is a silent systemic disease that causes bone deterioration, and affects over 10 million people in the US alone. This study was undertaken to develop a potential stem cell therapy for osteoporosis. We have isolated and expanded human dental pulp-derived stem cells (DPSCs), characterized them, and confirmed their multipotential differentiation abilities.
View Article and Find Full Text PDFFunctional analyses of noncoding RNAs have associated many micro RNAs (miRNA, miR) with various physiological processes, including proliferation, differentiation, development, cell metabolism, and apoptosis. Aberrant expression of miRNA and imbalance in their functions may lead to cellular aberration and different disease development, including cancer. In silico analysis of miRNA target prediction suggested that miR-148a possess a binding site in the 3' UTR of DNMT1 mRNA which can cause silencing of DNMT1 gene.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2017
Developmentally inclined hedgehog (HH) signaling pathway and pluripotency inducing transcription factor SOX2 have been known to work syngerstically during cellular reprogramming events to facilitate efficient differentiation. Hence, it is not surprising that both the factors are actively involved in arbitrating malignant growth, including prostate cancer progression. Here, we have described in details the potential mechanisms by which SOX2 effects neoplastic characteristics in prostate cancer and investigated the consequences of simultaneous down-regulation of SOX2 and HH pathway in androgen-independent human prostate cancer cells.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2017
Phospholipase C (PLC) is known to help the pathogen B. cereus entry to the host cell and human PLC is over expressed in multiple cancers. Knowledge of dynamic activity of the enzyme PLC while in action on membrane lipids is essential and helpful to drug design and delivery.
View Article and Find Full Text PDFThe role and clinical implication of ZRF1 in breast cancer are poorly understood. So this study is aimed to explore the role of ZRF1 in breast cancer progression. With this context, we first assessed its expression pattern in FFPE primary and metastasis breast tissue samples as well as from publicly available databases.
View Article and Find Full Text PDFMicroRNAs (miRNA) are small non-coding RNAs which targets most protein-coding transcripts (mRNA) and destroy them. Thus miRNA controls the abundance of those specific proteins and impact on developmental, physiological and pathological processes. Dysregulation of miRNA function thus may lead to various clinicopathological complications, including breast cancer.
View Article and Find Full Text PDFBackground: Caveolin-1 (CAV1) is an important structural component of cellular caveolae involved in cell signaling. CAV1 gene on/off regulatory mechanism in multiple diseases, including cancer is not clearly understood. The tumor suppressor versus oncogene paradox of CAV1 during tumor development tempted us to investigate the role for the epigenetic drift of CAV1 gene regulation.
View Article and Find Full Text PDFMany HDAC inhibitors have passed through the gateway of clinical trials. However, they have limited therapeutic implications due to their pleiotropic pharmaceutical properties and off-target effects. In view of this, dietary active phytochemicals were evaluated.
View Article and Find Full Text PDFClusterin (CLU) is an important glycoprotein involved in various cellular functions. Different reports have mentioned that the two isoforms of CLU; secretary (sCLU) and nuclear (nCLU) have opposite (paradoxical) roles in cancer development. sCLU provides pro-survival signal, whereas nCLU is involved in pro-apoptotic signaling.
View Article and Find Full Text PDFDNA methyltransferases (DNMTs) is a key epigenetic enzyme for pharmacological manipulation and is employed in cancer reprogramming. During past few years multiple strategies have been implemented to excavate epigenetic compounds targeting DNMTs. In light of the emerging concept of chemoinformatics, molecular docking and simulation studies have been employed to accelerate the development of DNMT inhibitors.
View Article and Find Full Text PDFBackground: DNA methylation mediates gene silencing primarily by inducing repressive chromatin architecture via a common theme of interaction involving methyl-CpG binding (MBD) proteins, histone modifying enzymes and chromatin remodelling complexes. Hence, targeted inhibition of MBD protein function is now considered a potential therapeutic alternative for thwarting DNA hypermethylation prompted neoplastic progress. We have analyzed the gene and protein expression level of the principal factors responsible for gene silencing, that is, DNMT and MBD proteins in MCF-7 and MDA-MB-231 breast cancer cell lines after treatment with various epigenetic drugs.
View Article and Find Full Text PDFCaveolin-1 (CAV1) is an integral part of plasma membrane protein playing a vital role in breast cancer initiation and progression. CAV1 acts both as a tumor suppressor as well as an oncogene, and its activity is thus highly dependent on cellular environment. Keeping this fact in mind, the recent work is designed to reveal the role of CAV1 in inhibiting cancer cell progression in presence of epigenetic modulators like 5-aza-2'-deoxycytidine (AZA), trichostatin A (TSA), S-adenosyl methionine (SAM) and sulforaphane (SFN).
View Article and Find Full Text PDFThe dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis.
View Article and Find Full Text PDF