Condensation of water vapor on nonwetting surfaces, termed dropwise condensation, leads to rapid droplet removal and significantly improves heat transfer compared to wetting surfaces. However, the spatial distribution of heterogeneous nucleation sites during dropwise condensation is random. Furthermore, the low surface energy of the nonwetting substrate reduces the nucleation rate as predicted by classical nucleation theory.
View Article and Find Full Text PDFThe removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/HO treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/HO treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation.
View Article and Find Full Text PDFJumping droplet condensation, whereby microdroplets (ca. 1-100 μm) coalescing on suitably designed superhydrophobic surfaces jump away from the surface, has recently been shown to have a 10× heat transfer enhancement compared to filmwise condensing surfaces. However, accurate measurements of the condensation heat flux remain a challenge due to the need for low supersaturations (<1.
View Article and Find Full Text PDFIn this study, PFOA removal and defluorination were examined during vacuum ultraviolet (VUV) photolysis in the presence of sulfite and sulfite/iodide conditions. PFOA (24 μM) degradation rate constant (k) and defluorination amount in VUV photolysis, and VUV/sulfite, and VUV/sulfite/iodide reactions under nitrogen-purging condition were 5.50 × 10, 7.
View Article and Find Full Text PDFWidespread use of spray-type consumer products can raise significant concerns regarding their effects on indoor air quality and human health. In this study, we conducted non-target screening using gas chromatography-mass spectrometry (GC-MS) to analyze VOCs in 48 different spray-type consumer products. Using this approach, we tentatively identified a total of 254 VOCs from the spray-type products.
View Article and Find Full Text PDFWe investigated the degradation of hexafluoropropylene oxide dimer acid (GenX) in water via VUV photolysis and VUV/sulfite reactions under nitrogen-saturated conditions. Approximately 35% and 90% of GenX were degraded in 3 h in the VUV photolysis and VUV/sulfite reaction. While GenX removal rate was highest at pH 6 in VUV photolysis, it increased under alkaline pHs, especially at pH 10, in VUV/sulfite reaction.
View Article and Find Full Text PDFSediments are sinks for microplastics (MPs) in freshwater environments. It is, therefore, necessary to investigate the occurrence and fate of accumulated MPs in the sediments, which pose a risk to aquatic organisms. We conducted the first comprehensive investigation of MPs in riverine sediment in South Korea to examine the temporal and spatial distribution of MPs in the sediment at the two main branches and downstream of the Han River.
View Article and Find Full Text PDFIn this study, semi-volatile organic compounds (SVOCs) in samples of indoor dust and organic thin films obtained from 100 residential houses in South Korea, were examined, based on both target analysis using gas chromatography-mass spectrometry (GC-MS) and non-target analysis by gas chromatography-quadrupole time-of flight mass spectrometry (GC-QTOF-MS) screening. In the targeted approach, phthalates and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dust and organic film samples, to find that both these classes of SVOCs were detected in dust and organic film samples, with the median concentrations of eight phthalates (Σ phthalate) and 16 PAHs (Σ PAH) being 1015.93 μg/g and 1824.
View Article and Find Full Text PDFMicro(nano)plastic (MNP) pollutants have not only impacted human health directly, but are also associated with numerous chemical contaminants that increase toxicity in the natural environment. Most recent research about increasing plastic pollutants in natural environments have focused on the toxic effects of MNPs in water, the atmosphere, and soil. The methodologies of MNP identification have been extensively developed for actual applications, but they still require further study, including on-site detection.
View Article and Find Full Text PDFThis study examined the abundance of microplastics (MPs) in 106 fish from 22 species inhabiting three sites of the Han River, South Korea. In total, 1753 MPs from 106 fish samples were identified with an average abundance of 15.60 ± 13.
View Article and Find Full Text PDFIn this study, a systematic multi-spectroscopic analysis of microplastics (MPs) sampled from a metropolitan area of Seoul was undertaken to elevate understanding of the role of wastewater treatment plants (WWTPs) in eliminating suspended contaminants including MPs before releasing the effluent water into the environment. We analyzed pollutants in influent and effluent samples from a WWTP in Seoul, South Korea. Spectroscopic and microscopic methods were used to analyze MPs.
View Article and Find Full Text PDFWe prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection.
View Article and Find Full Text PDFTo estimate greenhouse gas (GHG) emissions and degradation rate constants (k) from HO/UV-C, TiO/UV-C, and ozonation processes in the degradation of bisphenol A (BPA), the laboratory scale experiments were conducted. In the HO/UV-C process, the fastest degradation rate constant (k = 0.353 min) was observed at 4 mM of HO, while the minimum GHG emission was achieved at 3 mM of HO.
View Article and Find Full Text PDFDroplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear.
View Article and Find Full Text PDFThis study investigated the occurrence and removals of micropollutants in the sewage treatment tank (STT) which is a typical private wastewater treatment facility used in the rural communities in Korea, and their impact on receiving water. STTs were selected in eight provinces to examine the regional difference in the composition of micropollutant occurrence. We measured ten selected micropollutants in influents and effluents of STTs, as well as upstream and downstream of its receiving surface water.
View Article and Find Full Text PDFSeasonal and spatial variations in per- and polyfluoroalkyl substances (PFAS) concentrations in different environmental media in the Asan Lake area of South Korea were investigated by measuring liquid chromatography-tandem mass spectrometry (LC-MS/MS). The mean concentrations of Σ PFAS in the different media were in the ranges of 20.7-98.
View Article and Find Full Text PDFThis study presents a promising approach that enhances the sludge fermentation by using basic oxygen furnace (BOF) slag as an alkaline source for the first time. BOF slag added to the reactors could maintain a stable alkaline condition due to continuous release of Ca(OH) from slag. The reactor pH could be adjusted to a target value by the choice of the BOF slag dose.
View Article and Find Full Text PDFIn this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/HO reaction were examined. The presence of NO (0.04-0.
View Article and Find Full Text PDFWater vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions.
View Article and Find Full Text PDFThe aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates.
View Article and Find Full Text PDFThe removal and degradation pathways of microcystin-LR (MC-LR, [M+H] = 995.6) in UV-B photolysis and UV-B/HO processes were examined using liquid chromatography-tandem mass spectrometry. The UV/HO process was more efficient than UV-B photolysis for MC-LR removal.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2017
In this study, to examine the accumulated micropollutants in the spent carbon filter used in the water purifier, first, the method to desorb micropollutant from the activated carbon was developed and optimized. Then, using this optimized desorption conditions, we examined which micropollutants exist in spent carbon filters collected from houses in different regions in Korea where water purifiers were used. A total of 11 micropollutants (caffeine (CFF), acetaminophen (ACT), sulfamethazine (SMA), sulfamethoxazole (SMZ), metoprolol (MTP), carbamazepine (CBM), naproxen (NPX), bisphenol-A (BPA), ibuprofen (IBU), diclofenac (DCF), and triclocarban (TCB)) were analyzed using LC/MS-MS from the spent carbon filters.
View Article and Find Full Text PDFGreenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.
View Article and Find Full Text PDFThis study investigated the photodegradation kinetics of MeHg in the presence of various size fractions of dissolved organic matter (DOM) with MW < 3.5 kDa, 3.5 < MW < 10 kDa, and MW > 10 kDa.
View Article and Find Full Text PDFWe conducted chlorination, UV photolysis, and UV/chlorin reactions to investigate the intermediate formation and degradation mechanisms of geosmin and 2-methylisoborneol (2-MIB) in water. Chlorination hardly removed geosmin and 2-MIB, while the UV/chlorine reaction at 254 nm completely removed geosmin and 2-MIB within 40 min and 1 h, respectively, with lesser removals of both compounds during UV photolysis. The kinetics during both UV photolysis and UV/chlorine reactions followed a pseudo first-order reaction.
View Article and Find Full Text PDF