Nuclear factor erythroid 2-like 2 (Nrf2) is a key transcription factor responsible for the induction of cytoprotective genes when a cell is exposed to reactive oxygen species (ROS). Insufficient ROS neutralization has been associated with undesirable changes in the skin caused by age and disease. In order to mimic the pathological conditions of these oxidative stress-induced skin disorders, we established Nrf2-deficient HaCaT and immortalized human foreskin keratinocyte (iHFK) cell lines via lentiviral transduction of Nrf2-targeting short-hairpin RNAs.
View Article and Find Full Text PDFDiacylglycerol acyltransferases (DGATs) play a critical role in the biosynthesis of endogenous triglycerides (TGs) and formation of lipid droplets (LDs) in the liver. In particular, one member of DGATs, DGAT-1 was reported to be an essential host factor for the efficient production of hepatitis C virus (HCV) particles. By utilizing our previously characterized three different groups of twelve DGAT inhibitors, we found that one of the DGAT inhibitors, a 2-((4-adamantylphenoxy) methyl)--(furan-2-ylmethyl)-1-benzo[d]imidazole-5-carboxam () is a potent suppressor of both HCV genome replication and particle production.
View Article and Find Full Text PDFIn spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced blockage of proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs.
View Article and Find Full Text PDFBiomol Ther (Seoul)
September 2015
As a major component of the epidermal tissue, a primary keratinocyte has served as an essential tool not only for the study of pathogenesis of skin-related diseases but also for the assessment of potential toxicities of various chemicals used in cosmetics. However, its short lifespan in ex vivo setting has been a great hurdle for many practical applications. Therefore, a number of immortalization attempts have been made with success to overcome this limitation.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a hepatotropic single-stranded RNA virus. HCV infection is causally linked with development of liver cirrhosis and hepatocellular carcinoma. Enhanced production of reactive oxygen species by HCV has been implicated to play an important role in HCV-induced pathogenesis.
View Article and Find Full Text PDFIn order to identify the inhibitors of hepatitis C virus (HCV) replication with a novel scaffold via a mechanistically unbiased approach, we screened our in-house library composed of ∼6000 compounds with various chemical structures by using the renilla luciferase-linked genotype 2a reporter virus, and we identified a series of compounds containing an indole moiety that were active against HCV replication. Based on this result, we further synthesized three groups of indole derivatives and evaluated their inhibitory effects on HCV replication. In the present structure-activity relationship study of these indole derivatives, we discovered that compound 12e was the most potent inhibitor of HCV replication with minimal cytotoxicity (EC50 = 1.
View Article and Find Full Text PDFA number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI1, MAGI2, and MAGI3, MUPP1, 14-3-3zeta, Na/H exchange regulatory factor 1, PTPN13, TIP-2/GIPC, Tip-1, and PATJ. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation.
View Article and Find Full Text PDFChronic hepatitis C virus (HCV) infection is responsible for severe liver diseases including liver cirrhosis and hepatocellular carcinoma. An HCV non-structural protein 4B (NS4B) plays an essential role in viral RNA genome replication by building multi-vesicular structures around endoplasmic reticulum membranes. Especially, the second amphipathic helix of NS4B (NS4B-AH2) was shown to be essential for this process.
View Article and Find Full Text PDF