The effect of inhomogeneous quantum dot (QD) size distribution on the electronic transport of one-dimensional (1D) QD chains (QDCs) is theoretically investigated. The non-equilibrium Green function method is employed to compute the electron transmission probabilities of QDCs. The ensemble averaged transmission probability shows a close agreement with the conductivity equation predicted by Anderson et al.
View Article and Find Full Text PDFAs a sequel of part I (Kothari 2018 , 20180054), we present a general thermodynamic framework of flexoelectric constitutive laws for multi-layered graphene (MLG), and apply these laws to explain the role of crinkles in peculiar molecular adsorption characteristics of highly oriented pyrolytic graphite (HOPG) surfaces. The thermodynamically consistent constitutive laws lead to a non-local interaction model of polarization induced by electromechanical deformation with flexoelectricity-dielectricity coupling. The non-local model predicts curvature and polarization localization along crinkle valleys and ridges very close to those calculated by density functional theory (DFT).
View Article and Find Full Text PDFProc Math Phys Eng Sci
June 2018
Here, we report the discovery of a new, curvature-localizing, subcritical buckling mode that produces shallow-kink corrugation in multi-layer graphene. Our density functional theory (DFT) analysis reveals the mode configuration-an approximately 2 nm wide boundary layer of highly localized curvature that connects two regions of uniformly but oppositely sheared stacks of flat atomic sheets. The kink angle between the two regions is limited to a few degrees, ensuring elastic deformation.
View Article and Find Full Text PDFWe investigate the mechanism of dihydrogen adsorption onto Ca cation centers, which has been the significant focus of recent research for hydrogen storage. We particularly concentrate on reliability of commonly used density-functional theories, in comparison with correlated wave function theories. It is shown that, irrespective of the chosen exchange-correlation potentials, density-functional theories result in unphysical binding of H2 molecules onto Ca1+ system.
View Article and Find Full Text PDFA field effect transistor (FET) measurement of a single-walled carbon nanotube (SWNT) shows a transition from a metallic one to a p-type semiconductor after helical wrapping of DNA. Water is found to be critical to activate this metal-semiconductor transition in the ssDNA-SWNT hybrid. Raman spectroscopy confirms the same change in electrical behaviors.
View Article and Find Full Text PDF