Publications by authors named "Moon-Hee Na"

A growing body of evidence suggests that pathological lesions express tissue-specific molecular targets or biomarkers within the tissue. Interleukin-4 receptor (IL-4R) is overexpressed in many types of cancer cells, including lung cancer. Here we investigated the properties of IL-4R-binding peptide-1 (IL4RPep-1), a CRKRLDRNC peptide, and its ability to target the delivery of liposomes to lung tumor.

View Article and Find Full Text PDF

Macromolecular nanoparticles can extravasate and accumulate within tumor tissues via the passive targeting system, reflecting enhanced permeability and the retention effect. However, the unsatisfactory tumor therapeutic efficacy of the passive-targeting system, attributable to the retention of extravasated nanoparticles in the vicinity of tumor vessels, argues that a new system that facilitates intracellular delivery of nanoparticles within tumors is needed. Here, we developed hydrophobically modified glycol chitosan (HGC) nanoparticles conjugated with interleukin-4 receptor (IL-4R) binding peptides, termed I4R, and tested them in mice bearing IL-4R-positive tumors.

View Article and Find Full Text PDF

When tumor cells undergo apoptosis in response to chemotherapy, the levels of apoptotic biomarkers such as histone H1 are increased at the tumor. This would amplify in situ homing signals and thus drug delivery by apoptosis-targeted drugs. To examine this possibility, we prepared apoptosis-targeted liposomes containing doxorubicin by labeling them with the CQRPPR peptide (ApoPep-1) that recognizes apoptotic cells by binding to histone H1.

View Article and Find Full Text PDF

Targeted delivery of imaging agents and therapeutics to tumors would provide early detection and increased therapeutic efficacy against cancer. Here we have screened a phage-displayed peptide library to identify peptides that selectively bind to lung tumor cells. Evaluation of individual phage clones after screening revealed that a phage clone displaying the CSNIDARAC peptide bound to H460 lung tumor cells at higher extent than other phage clones.

View Article and Find Full Text PDF
Article Synopsis
  • In vivo imaging of apoptosis can help track how tumors respond to cancer treatments like chemotherapy.
  • Using phage display, researchers discovered the ApoPep-1 peptide, which targets apoptotic and necrotic cells in tumors but shows minimal binding to healthy cells.
  • ApoPep-1 specifically binds to histone H1 on the surface of apoptotic cells, allowing enhanced imaging signals from tumors treated with anti-cancer drugs, while limiting uptake in healthy organs like the liver and lungs.
View Article and Find Full Text PDF

Imaging or drug delivery tools for atherosclerosis based on the plaque biology are still insufficient. Here, we attempted to identify peptides that selectively home to atherosclerotic plaques using phage display. A phage library containing random peptides was ex vivo screened for binding to human atheroma tissues.

View Article and Find Full Text PDF