Publications by authors named "Moon-Chang Choi"

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, with an extremely poor prognosis due to resistance to standard-of-care treatments. Strong evidence suggests that the small population of glioma stem cells (GSCs) contributes to the aggressiveness of GBM. One of the mechanisms that promote GSC progression is the dysregulation of membrane transporters, which mediate the influx and efflux of substances to maintain cellular homeostasis.

View Article and Find Full Text PDF

This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC.

View Article and Find Full Text PDF

Aims: Glioblastoma multiforme (GBM) is the most aggressive type of human brain tumor, with a poor prognosis and a median overall survival of fewer than 15 months. Glioma stem cells (GSCs) have recently been identified as a key player in tumor initiation and therapeutic resistance in GBM. ADAMTS family of metalloproteinases is known to cleave a wide range of extracellular matrix substrates and has been linked to tissue remodeling events in tumor development.

View Article and Find Full Text PDF

The increase and dissemination of antimicrobial resistance is a global public health issue. To address this, new antimicrobial agents have been developed. Antimicrobial peptides (AMPs) exhibit a wide range of antimicrobial activities against pathogens, including bacteria and fungi.

View Article and Find Full Text PDF

Background: Cathelicidin, an antimicrobial peptide, plays a key role in regulating bacterial killing and innate immunity; however, its role in skeletal muscle function is unknown. We investigated the potential role of cathelicidin in skeletal muscle pathology resulting from acute injury and Duchenne muscular dystrophy (DMD) in mice.

Methods: Expression changes and muscular localization of mouse cathelicidin-related antimicrobial peptide (Cramp) were examined in the skeletal muscle of normal mice treated with chemicals (cardiotoxin and BaCl ) or in dystrophic muscle of DMD mouse models (mdx, mdx/Utrn and mdx/Utrn ).

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most aggressive type of human brain tumor with a poor prognosis and a low survival rate. Secreted proteins from tumors are recently considered as important modulators to promote tumorigenesis by communicating with microenvironments. Repulsive guidance molecule A (RGMA) was initially characterized as an axon guidance molecule after secretion in the brain during embryogenesis but has not been studied in GBM.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common type of arthritis and is associated with wear and tear, aging, and inflammation. Previous studies revealed that several antimicrobial peptides are up-regulated in the knee synovium of patients with OA or rheumatoid arthritis. Here, we investigated the functional effects of cathelicidin-related antimicrobial peptide (Cramp) on OA pathogenesis.

View Article and Find Full Text PDF

Antibiotic resistance is an important issue affecting humans and livestock. Antimicrobial peptides are promising alternatives to antibiotics. In this study, the antimicrobial peptide Css54, isolated from the venom of , was found to exhibit antimicrobial activity against bacteria such as , , , and that cause zoonotic diseases.

View Article and Find Full Text PDF

Glioma stem cells (GSCs) have been shown to contribute to tumor development and recurrence, therapeutic resistance, and cellular heterogeneity of glioblastoma multiforme (GBM). Recently, it has been reported that GSCs lose their self-renewal ability and tumorigenic potential upon differentiation. In this study, we identified Regulatory Factor X4 () gene to regulate GSCs' survival and self-renewal activity in the GBM patients samples.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common and increasing joint disease worldwide. Current treatment for OA is limited to control of symptoms. The purpose of this study was to determine the effect of specificity protein 1 (SP1) inhibitor Mithramycin A (MitA) on chondrocyte catabolism and OA pathogenesis and to explore the underlying molecular mechanisms involving SP1 and other key factors that are critical for OA.

View Article and Find Full Text PDF

Objectives: The worldwide increase in antibiotic-resistant bacteria is a growing threat to public health. Antimicrobial peptides (AMPs) are potentially effective alternatives to conventional antibiotics. We therefore tested analogues of the AMP mBjAMP1 from Branchiostoma japonicum, which we produced by adding and/or replacing amino acids to increase antimicrobial activity against Gram-negative bacteria.

View Article and Find Full Text PDF

Objective: IκBζ, an atypical IκB family member, regulates gene expression in the nucleus as a transcriptional cofactor. Although IκBζ has been extensively studied in the immune system, its specific roles in osteoarthritis (OA) are currently unknown. The objective of this study was to investigate the potential role of IκBζ in chondrocyte catabolism and OA pathogenesis.

View Article and Find Full Text PDF

Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials.

View Article and Find Full Text PDF

Fiber type-specific programs controlled by the transcription factor MEF2 dictate muscle functionality. Here, we show that HDAC4, a potent MEF2 inhibitor, is predominantly localized to the nuclei in fast/glycolytic fibers in contrast to the sarcoplasm in slow/oxidative fibers. The cytoplasmic localization is associated with HDAC4 hyper-phosphorylation in slow/oxidative-fibers.

View Article and Find Full Text PDF

Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress.

View Article and Find Full Text PDF

During muscle regeneration, the transcription factor Pax7 stimulates the differentiation of satellite cells (SCs) toward the muscle lineage but restricts adipogenesis. Here, we identify HDAC4 as a regulator of Pax7-dependent muscle regeneration. In HDAC4-deficient SCs, the expression of Pax7 and its target genes is reduced.

View Article and Find Full Text PDF

Activation of the inflammatory response is accompanied by a metabolic shift to aerobic glycolysis. Here we identify histone deacetylase 4 (HDAC4) as a new component of the immunometabolic program. We show that HDAC4 is required for efficient inflammatory cytokine production activated by lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Reversible acetylation of α-tubulin is an evolutionarily conserved modification in microtubule networks. Despite its prevalence, the physiological function and regulation of microtubule acetylation remain poorly understood. Here we report that macrophages challenged by bacterial lipopolysaccharides (LPS) undergo extensive microtubule acetylation.

View Article and Find Full Text PDF

Prolonged deficits in neural input activate pathological muscle remodeling, leading to atrophy. In denervated muscle, activation of the atrophy program requires HDAC4, a potent repressor of the master muscle transcription factor MEF2. However, the signaling mechanism that connects HDAC4, a protein deacetylase, to the atrophy machinery remains unknown.

View Article and Find Full Text PDF

Histone deacetylase (HDAC)10, a novel class IIb histone deacetylase, is the most similar to HDAC6, since both contain a unique second catalytic domain. Unlike HDAC6, which is located in the cytoplasm, HDAC10 resides in both the nucleus and cytoplasm. The transcriptional targets of HDAC10 that are associated with HDAC10 gene regulation have not been identified.

View Article and Find Full Text PDF

Cell adhesion to the extracellular matrix (ECM) can activate signaling via focal adhesion kinase (FAK) leading to dynamic regulation of cellular morphology. Mechanistic basis for the lack of effective intracellular signaling by non-attached epithelial cells is poorly understood. To examine whether signaling in suspended cells is regulated by Fer cytoplasmic tyrosine kinase, we investigated the effect of ectopic Fer expression on signaling in suspended or adherent hepatocytes.

View Article and Find Full Text PDF

A-kinase anchoring protein 12 (AKAP12) is known to function as a scaffold protein and as a putative tumor suppressor. However, little is known about the biological role of AKAP12 in hepatic cells. In this study, we performed micro-array analysis to identify the downstream pathway of AKAP12A, and found that AKAP12A overexpression up-regulates the expressions of several cholesterol-associated genes including HMG-CoA reductase and LDL receptor, which have been reported to be controlled by sterol regulatory element binding protein-2 (SREBP-2).

View Article and Find Full Text PDF

DNA methyltransferase 3B has been demonstrated to mediate gene silencing. The mechanisms how DNA methyltransferase 3B is targeted to specific regions and represses gene transcription, however, are not well understood. Here we show that by using yeast two-hybrid screening, DNA methyltransferase 3B interacts with the human polycomb protein, hPc2.

View Article and Find Full Text PDF