The initiation of transition to flowering is carefully managed by endogenous and environmental cues, which is critical for flowering plant reproductive success. Here, we found that wheat RING-type E3 ligase TaFRFP was highly expressed from the double ridge to degeneration stage (WS2.5-WS9).
View Article and Find Full Text PDFWe design a cryptographic transistor (cryptoristor)-based true random number generator (tRNG) with low power consumption and small footprint. This is the first attempt to use irregular and unpredictable operation-induced randomness of a cryptoristor as an entropy source. To extract discrete random numbers with a binary code from the cryptoristor, we developed a noise-coupling analog-to-digital converter.
View Article and Find Full Text PDFA wind-driven triboelectric nanogenerator (W-TENG) is a promising energy harvesting device due to its clean, ubiquitous and unexhausted properties. In addition, a W-TENG induces unpredictable chaotic outputs from wind flow that can serve as an entropy source for cryptography. This can be applied to a true random number generator (TRNG) for a secured system due to its inherent turbulent nature; thus, a W-TENG with a two-in-one structure can simultaneously generate both power and true random numbers.
View Article and Find Full Text PDFThe transition of food crops from the vegetative to reproductive stages is an important process that affects the final yield. Despite extensive characterization of E3 ligases in model plants, their roles in wheat development remain unknown. In this study, we elucidated the molecular function of wheat TaATL1 (Arabidopsis thaliana Toxicos EN Levadura), which acts as a negative regulator of flowering time and cell division.
View Article and Find Full Text PDFWind-driven triboelectric nanogenerators (W-TENGs) are a promising candidate for an energy harvester because wind itself possesses unexhausted, ubiquitous, and clean properties. W-TENG has also been used as a random number generator (RNG) due to the inherent chaotic properties of wind that is also an entropy source. Thus, a W-TENG which simultaneously generates both power and true random numbers with a two-in-one structure, is a wind-driven RNG (W-RNG) like the Janus.
View Article and Find Full Text PDFHistone methylation is actively involved in plant flowering time and is regulated by a myriad of genetic pathways that integrate endogenous and exogenous signals. We identified an F-box gene from wheat (Triticum aestivum L.) and named it TaF-box3.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2023
Drought stress frequently results in significant reductions in crop production and yield. Plant U-box proteins (PUB) play a key role in the response to abiotic stress. Despite extensive characterization of PUB in model plants, their roles in wheat abiotic stress response remains unknown.
View Article and Find Full Text PDFPlant U-box E3 ligases (PUBs) are important regulators of responses to various abiotic stress conditions. In this study, we found that wheat (Triticum aestivum. L) PUBs TaPUB2 and TaPUB3 enhanced abscisic acid (ABA) responses and salt tolerance in Arabidopsis.
View Article and Find Full Text PDFIn wheat (Triticum aestivum L.), the floret development stage is an important step in determining grain yield per spike; however, the molecular mechanisms underlying floret development remain unclear. In this study, we elucidated the role of TaF-box2, a member of the F-box-containing E3 ubiquitin protein ligases, which is involved in floret development and anthesis of wheat.
View Article and Find Full Text PDFPlant U-box E3 ubiquitin ligase (PUB) is involved in various environmental stress conditions. However, the molecular mechanism of U-box proteins in response to abiotic stress in wheat remains unknown. In this study, two U-box E3 ligase genes ( and ), which are highly expressed in response to adverse abiotic stresses, were isolated from common wheat, and their cellular functions were characterized under drought stress.
View Article and Find Full Text PDFLate stages of floret development, such as booting, heading, and anthesis stages, are important steps for determining grain setting and for filling in wheat. Herein, we report the molecular function of Triticum aestivum ELF7 encoding RNA polymerase II-associated factor 1 (PAF1), which may act as a negative regulator in floret development and anthesis stages. Among the six TaELF7-like genes isolated from wheat, TaELF7 like1-A and TaELF7 like2-B showed contrasting expression levels during the late stage of floret development stages, with observation of decreased expression level of TaELF7 like1-A compared to that of TaELF7 like2-B.
View Article and Find Full Text PDFWith the rapid development of the Internet of Things (IoT), the number of sensors utilized for the IoT is expected to exceed 200 billion by 2025. Thus, sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications.
View Article and Find Full Text PDFThe production of rice-based beverages fermented by lactic acid bacteria (LAB) can increase the consumption of rice in the form of a dairy replacement. This study investigated volatile and nonvolatile components in rice fermented by 12 different LABs. Volatile compounds of fermented rice samples were analyzed using gas chromatography-mass spectrometry (GC-MS) combined with solid-phase microextraction (SPME), while nonvolatile compounds were determined using gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) after derivatization.
View Article and Find Full Text PDFUnlabelled: Red pepper (Capsicum annuum L.) has been used as one of key ingredients in certain fermented foods due to it providing a unique hot and spicy sensation. In this study, volatile compounds-including degradation compounds of carotenoids-in fermented red pepper inoculated with Lactobacillus parabuchneri were investigated.
View Article and Find Full Text PDFObjective: To compare the morphometry of subaxial cervical spine between cerebral palsy (CP) and normal control.
Methods: We retrospectively analyzed 72 patients with CP, as well as 72 patients from normal population. The two groups were matched for age, sex, and body mass index.
Background Context: Awareness of vascular anomalies is crucial to avoid iatrogenic injuries during surgical procedure. Although V3 segment anomaly has been well described, the incidence of V3 segment anomaly has been rather variable in the literature, and there are few reports regarding the adequate surgical strategy for each type of V3 segment anomaly.
Purpose: This study aimed to analyze the incidence of V3 segment anomaly and demonstrate the importance of recognizing vertebral artery (VA) anomaly in deciding the surgical strategy for C1 screw placement.
Purpose: To describe the effect of the C1 bursting fracture on the location of the internal carotid artery (ICA) around the atlas.
Methods: The authors analyzed the morphology of the atlas and the ICA in 15 patients with C1 bursting fracture and compared with control group (77 patients) without any pathology. All patients were evaluated with CT angiography for the anatomical assessment.
A highly sensitive and selective electrochemical sensor of dopamine (DA) has been developed by employing carboxylated carbonaceous spheres to modify glassy carbon electrodes (GCEs). Scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize as-prepared carbonaceous spheres. The results show that the diameter of carboxylated carbonaceous spheres is uniformly 500 nm and that their surfaces mainly expose carboxyl groups with negative charges.
View Article and Find Full Text PDFHollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowires fabricated from heavily doped Si wafer are formed with a meso-porous structure by an Ag-assisted etching approach, and Cu nanoparticles are formed and uniformly decorated on the Si nanowires through a reaction of copper ions reduced by silicon.
View Article and Find Full Text PDFInt J Food Microbiol
October 2011