Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2020
Simultaneously improving energy efficiency (EE) and material stability in electrochemical CO conversion remains an unsolved challenge. Among a series of ternary Sn-Ti-O electrocatalysts, 3D ordered mesoporous (3DOM) Sn Ti O achieves a trade-off between active-site exposure and structural stability, demonstrating up to 71.5 % half-cell EE over 200 hours, and a 94.
View Article and Find Full Text PDFNano-engineered hierarchical core-shell nickel cobaltite chestnut-like structures were successfully synthesized as a bifunctionally active electrocatalyst for rechargeable metal-air battery applications. Both the morphology and composition of the catalyst were optimized by a facile hydrothermal reaction, resulting in a 10 h reacted sample demonstrating significantly enhanced activity toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in 0.1 m KOH.
View Article and Find Full Text PDFThe present work introduces spinel oxide nanocrystals self-assembled into mesoporous spheres that are bifunctionally active towards catalyzing both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The electrochemical evaluation reveals that (Ni,Co) O demonstrates a significantly positive-shifted ORR onset and half-wave potentials [-0.127 and -0.
View Article and Find Full Text PDFZinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance.
View Article and Find Full Text PDFTo enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.
View Article and Find Full Text PDFRational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).
View Article and Find Full Text PDFHerein, a proof-of-concept of novel hybrid rechargeable battery based on electrochemical reactions of both nickel-zinc and zinc-air batteries is demonstrated using NiO/Ni(OH)2 nanoflakes self-assembled into mesoporous spheres as the active electrode material. The hybrid battery operates on two sets of fundamentally different battery reactions combined at the cell level, unlike in other hybrid systems where batteries of different reactions are simply connected through an external circuitry. As a result of combining nickel-zinc and zinc-air reactions, the hybrid battery demonstrates both remarkably high power density (volumetric, 14 000 W L(-1); gravimetric, 2700 W kg(-1)) and energy density of 980 W h kg(-1), significantly outperforming the performances of a conventional zinc-air battery.
View Article and Find Full Text PDFA highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C.
View Article and Find Full Text PDFA thin-film, flexible, and rechargeable zinc-air battery having high energy density is reported particularly for emerging portable and wearable electronic applications. This freeform battery design is the first demonstrated by sandwiching a porous-gelled polymer electrolyte with a freestanding zinc film and a bifunctional catalytic electrode film. The flexibility of both the electrode films and polymer electrolyte membrane gives great freedom in tailoring the battery geometry and performance.
View Article and Find Full Text PDFDeveloping an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.
View Article and Find Full Text PDFAdvanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).
View Article and Find Full Text PDFBackground: Ezetimibe, a first-in-its-class inhibitor of cholesterol absorption, is an effective agent for combined use with statins to achieve low-density lipoprotein cholesterol (LDL-C) goals. Ezetimibe in combination with simvastatin as a single-tablet formulation has proven to be highly effective in reducing serum LDL-C through the dual inhibition of cholesterol absorption and biosynthesis. The effect of time of administration on efficacy of this combination therapy has not been evaluated.
View Article and Find Full Text PDFExpression of estrogen receptors (ER)-alpha and -beta, as well as androgen receptor (AR), in hepatocellular carcinoma (HCC) is thought to be correlated with prognosis, survival, and male prevalence of HCC. These hypotheses are based on investigations of European patients; however the expression patterns of these receptors in Asian patients are largely unknown. In this study, we collected liver carcinoma and peritumor tissues from 32 patients (9 females and 23 males) in South Korea.
View Article and Find Full Text PDFRas-related, estrogen-regulated, and growth-inhibitory gene (RERG) is a novel gene that was first reported in breast cancer. However, the functions of RERG are largely unknown in other tumor types. In this study, RERG expression was analyzed in hepatocellular carcinomas of human patients using reverse transcriptase PCR analysis.
View Article and Find Full Text PDF