Mucosal immunity plays a critical role in the protection of teleost fish against infection, but mucosal immunoglobulin of important aquaculture species unique to Southeast Asia remained greatly understudied. In this study, the sequence of immunoglobulin T (IgT) from Asian sea bass (ASB) is described for the first time. IgT of ASB possesses the characteristic structure of immunoglobulin with a variable heavy chain and four CH4 domains.
View Article and Find Full Text PDFThe poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain.
View Article and Find Full Text PDFSurveillance of SARS-CoV-2 infection is critical for controlling the current pandemic. Antigen rapid tests (ARTs) provide a means for surveillance. Available lateral flow assay format ARTs rely heavily on nitrocellulose paper, raising challenges in supply shortage.
View Article and Find Full Text PDFThe constant mutation of SARS-CoV-2 has led to the emergence of new variants, which call for urgent effective therapeutic interventions. The trimeric spike (S) protein of SARS-CoV-2 is highly immunogenic with the receptor-binding domain (RBD) that binds first to the cellular receptor angiotensin-converting enzyme 2 (ACE2) and is therefore the target of many neutralizing antibodies. In this study, we characterized a broadly neutralizing monoclonal antibody (mAb) 9G8, which shows potent neutralization against the authentic SARS-CoV-2 wild-type (WT), Alpha (B.
View Article and Find Full Text PDFThe H9N2 avian influenza viruses cause significant economic losses in poultry worldwide and could potentially cause human pandemic. Currently, the available vaccines have limited efficacy due to antigenic drift of H9N2. To improve vaccine efficacy, we developed monovalent vaccine strain via the modification of neutralizing epitopes on hemagglutinin (HA) to broaden the protection against H9N2 viruses.
View Article and Find Full Text PDFRecognition of RNAs under physiological conditions is important for the development of chemical probes and therapeutic ligands. Nucleobase-modified dsRNA-binding PNAs (dbPNAs) are promising for the recognition of dsRNAs in a sequence and structure specific manner under near-physiological conditions. Guanidinium is often present in proteins and small molecules for the recognition of G bases in nucleic acids, in cell-penetrating carriers, and in bioactive drug molecules, which might be due to the fact that guanidinium is amphiphilic and has unique hydrogen bonding and stacking properties.
View Article and Find Full Text PDFRNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids.
View Article and Find Full Text PDFRNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure.
View Article and Find Full Text PDFVaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications.
View Article and Find Full Text PDFThe highly pathogenic avian influenza (HPAI) H5N1 virus remains to be one of the world's largest pandemic threats due to the emergence of new variants. The rapid evolution of new sub-lineages is currently the greatest challenge in vaccine development. In this study, we developed an epitope modified non-pathogenic H5N3 (A/duck/Singapore/97) vaccine for broad protection against influenza H5 subtype.
View Article and Find Full Text PDFBackground: Saffold Virus (SAFV) is a human cardiovirus that is suspected of causing infection of the central nervous system (CNS) in children. While recent animal studies have started to elucidate the pathogenesis of SAFV, very little is known about the mechanisms behind it.
Method: In this study, we attempted to elucidate some of the mechanisms of the pathogenesis of SAFV in the brain of a juvenile mouse model by using immunohistochemical methods.
The Saffold virus (SAFV) genome is translated as a single long polyprotein precursor and co-translationally cleaved to yield 12 separate viral proteins. Little is known about the activities of SAFV proteins although their homologs in other picornaviruses have already been described. To further support research on functions and activities of respective viral proteins, we investigated the spatio-temporal distribution of SAFV proteins in Vero and HEp-2 cells that had been either transfected with plasmids that express individual viral proteins or infected with live SAFV.
View Article and Find Full Text PDFSaffold virus (SAFV) is an emerging human cardiovirus that has been shown to be ubiquitous. Initial studies of SAFV focused on respiratory and gastrointestinal infection; however, it has also recently been associated with diverse clinical symptoms including the endocrine, cardiovascular, and neurological systems. Given the systemic nature of SAFV, and its high prevalence, understanding its pathogenicity and clinical impact is of utmost importance.
View Article and Find Full Text PDFSaffold Virus (SAFV) is a human cardiovirus that has been suggested to cause severe infection of the central nervous system (CNS). Compared to a similar virus, Theiler's murine encephalomyelitis virus (TMEV), SAFV has a truncated Leader (L) protein, a protein essential in the establishment of persistent CNS infections. In this study, we generated a chimeric SAFV by replacing the L protein of SAFV with that of TMEV.
View Article and Find Full Text PDFAvian influenza A H7N7/NL/219/03 virus creates a serious pandemic threat to human health because it can transmit directly from domestic poultry to humans and from human to human. Our previous vaccine study reported that mice when immunized intranasally (i.n) with live Bac-HA were protected from lethal H7N7/NL/219/03 challenge, whereas incomplete protection was obtained when administered subcutaneously (s.
View Article and Find Full Text PDFBackground: The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector) was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.
Methods: BALB/c mice and guinea pigs were immunized i.
The outbreak of human infections with avian-origin H7N9 influenza has raised global concerns about a potential human pandemic. Therefore, the generation of simple and reliable newer vaccines is high priority for pandemic preparedness. In this study, we aimed to develop a recombinant vaccine by expressing HA of H7N9 (A/Shanghai/2/2013) on the surface of baculovirus (BacHA).
View Article and Find Full Text PDFH5N1 HPAI virus continues to be a severe threat for public health, as well as for the poultry industry, due to its high mortality and antigenic drift rate. There is no monovalent vaccine available which provides broad protection against those major circulating strains. In the present study, a monovalent H5 vaccine strain was developed with antigenic sequence analysis and epitope mutations.
View Article and Find Full Text PDFBackground: Outbreaks in poultry involving influenza virus from H7 subtype have resulted in human infections, thus causing a major concern for public health, as well as for the poultry industry. Currently, no efficient rapid test is available for large-scale detection of either antigen or antibody of H7 avian influenza viruses.
Results: In the present study, a dual function ELISA was developed for the effective detection of antigen and antibody against H7 AIVs.
Recurrence of highly pathogenic avian influenza (HPAI) virus subtype H7 in humans and poultry continues to be a serious concern to public health. No effective prevention and treatment are currently available against H7 infection. One H7 monoclonal antibody, Mab 62 was selected and characterized.
View Article and Find Full Text PDFThe rapid evolution of new sublineages of H5N1 influenza in Asia poses the greatest challenge in vaccine development for pre-pandemic preparedness. To overcome the antigenic diversity of H5N1 strains, multiple vaccine strains can be designed based on the distribution of neutralizing epitopes in the globular head of H5 hemagglutinin (HA). Recently, we selected two different HAs of H5N1 strains based on the neutralizing epitopes and reactivity with different neutralizing antibodies.
View Article and Find Full Text PDFThe present study demonstrates the cross-protective efficacy of baculovirus displayed HAs of A/Indonesia/669/06 and A/Anhui/01/05 against heterologous H5N1 challenges in a mouse model. Mice orally or subcutaneously immunized with live bivalent-BacHA vaccine significantly induced higher HA-specific humoral and cellular immune responses when compared with inactivated bivalent-BacHA. In addition, oral administration of live bivalent-BacHA vaccine was able to induce significant level of antigen-specific mucosal IgA levels.
View Article and Find Full Text PDFThe protective immunity of baculovirus displaying influenza virus hemagglutinin (BacHA) against influenza 2009 H1N1 virus infection in a murine model was investigated. The results showed that mice vaccinated with live BacHA or an inactive form of adjuvanted BacHA had enhanced specific antibody responses and induced protective immunity against 2009 H1N1 virus infection, suggesting the potential of baculovirus as a live or inactivated vaccine.
View Article and Find Full Text PDFBackground: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met.
Methodology/principal Findings: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.