Publications by authors named "Montserrat Pineda Rosales"

Article Synopsis
  • Engineering tissue implants using human induced pluripotent stem cells (hiPSCs) shows potential for repairing large tissue losses but faces challenges in survival and integration.* -
  • The study introduces scalable vessel-integrated muscle-like lattices (VMLs) that feature dense hiPSC-derived myofibers and vessel-like microchannels, enhancing myofiber maturation and host integration.* -
  • This advanced bioprinting technology allows for the creation of larger, prevascularized muscle tissues, which successfully restore muscle function and promote healing in volumetric muscle loss injury models.*
View Article and Find Full Text PDF

Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced.

View Article and Find Full Text PDF