Publications by authors named "Montserrat Nacher-Vazquez"

are opportunistic intracellular pathogens that are found throughout the environment. The contamination of water systems represents a serious social problem that can lead to severe diseases, which can manifest as both Pontiac fever and Legionnaires' disease (LD) infections. Fluorescence in situ hybridization using nucleic acid mimic probes (NAM-FISH) is a powerful and versatile technique for bacterial detection.

View Article and Find Full Text PDF

Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH.

View Article and Find Full Text PDF

More than 1 billion people live in areas endemic for leishmaniasis, which is a relevant threat for public health worldwide. Due to the inadequate treatments, there is an urgent need to develop novel alternative drugs and to validate new targets to fight this disease. One appealing approach is the selective inhibition of protein kinases (PKs), enzymes involved in a wide range of processes along the life cycle of Several PKs, including glycogen synthase kinase 3 (GSK-3), have been validated as essential for this parasite by genetic or pharmacological methods.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a way to target a specific enzyme, GSK-3, to fight a parasite that causes diseases.
  • They tested compounds from their own collection and another collection to find new medicines that could stop this enzyme.
  • The researchers discovered new types of chemicals that could help create effective treatments against the parasite in the future.
View Article and Find Full Text PDF

The human protozoan parasites Leishmania donovani and L. infantum are the causative agents of visceral leishmaniasis, as such, responsible for approximately 30,000 deaths annually. The available chemotherapeutic treatments are reduced to a few drugs whose effectiveness is limited by rising drug resistance/therapeutic failure, and noxious side-effects.

View Article and Find Full Text PDF

A new class of quinoline derivatives, bearing amino chains at C-4 and a styryl group at C-2, were tested on Leishmania donovani promastigotes and axenic and intracellular Leishmania pifanoi amastigotes. The introduction of the C-4 substituent improves the activity, which is due to interference with the mitochondrial activity of the parasite and its concomitant bioenergetic collapse by ATP exhaustion. Some compounds show a promising antileishmanial profile, with low micromolar or submicromolar activity on promastigote and amastigote forms and a good selectivity index.

View Article and Find Full Text PDF
Article Synopsis
  • - Drug repurposing allows for the quick and cost-effective use of existing medications, like sertraline, which has shown effectiveness against visceral leishmaniasis in animal studies.
  • - Research using metabolomics and electron microscopy revealed sertraline disrupts the energy metabolism of the parasite by uncoupling respiration and lowering ATP levels, leading to oxidative stress and metabolic disturbances.
  • - The study suggests sertraline kills the parasite by targeting multiple metabolic pathways, making it a promising option for treating visceral leishmaniasis through drug repurposing.
View Article and Find Full Text PDF

Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials.

View Article and Find Full Text PDF

The exopolysaccharide synthesized by MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the gene, which encodes the dextransucrase involved in dextran synthesis.

View Article and Find Full Text PDF

In this work we have investigated two dextran-producing lactic acid bacteria, Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10, isolated from fermented meat products. These bacteria synthesise dextran when sucrose, but not glucose, is present in the growth medium. The influence of dextran on bacterial aggregation, adhesion and biofilm formation was investigated in cultures challenged with sucrose or glucose.

View Article and Find Full Text PDF

Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB) produce homopolysaccharides (HoPS) and heteropolysaccharides (HePS) with potential functional properties. In this work, we have performed a comparative analysis of production and purification trials of these biopolymers from bacterial culture supernatants. LAB strains belonging to four different genera, both natural as well as recombinant, were used as model systems for the production of HoPS and HePS.

View Article and Find Full Text PDF