Publications by authors named "Montserrat Llobera"

Background: The foremost cause of death of breast cancer (BC) patients is metastasis, and the first site to which BC predominantly metastasizes is the axillary lymph node (ALN). Thus, ALN status is a key prognostic indicator at diagnosis. The immune system has an essential role in cancer progression and dissemination, so its evaluation in ALNs could have significant applications.

View Article and Find Full Text PDF

Breast cancer (BC) comprises four immunohistochemical surrogate subtypes of which triple-negative breast cancer (TNBC) has the highest risk of mortality. Axillary lymph nodes (ALNs) are the regions where BC cells first establish before distant metastasis, and the presence of tumor cells in the ALN causes an immune tolerance profile that contrasts with that of the nonmetastatic ALN (ALN). However, few studies have compared the immune components of the ALNs in BC subtypes.

View Article and Find Full Text PDF

Tumor cells can modify the immune response in primary tumors and in the axillary lymph nodes with metastasis (ALN) in breast cancer (BC), influencing patient outcome. We investigated whether patterns of immune cells in the primary tumor and in the axillary lymph nodes without metastasis (ALN) differed between patients diagnosed without ALN (diagnosed-ALN) and with ALN (diagnosed-ALN) and the implications for clinical outcome. Eleven immune markers were studied using immunohistochemistry, tissue microarray, and digital image analysis in 141 BC patient samples (75 diagnosed-ALN and 66 diagnosed-ALN).

View Article and Find Full Text PDF

Introduction: Lymph nodes are one of the main sites where an effective immune response develops. Normally, axillary nodes are the first place where breast cancer produces metastases. Several studies have demonstrated the importance of immune cells, especially dendritic cells, in the evolution of breast cancer.

View Article and Find Full Text PDF

A new method that simplifies the evaluation of the traditional HER2 fluorescence in situ hybridization (FISH) evaluation in breast cancer was proposed. HER2 status was evaluated in digital images (DIs) captured from 423 invasive breast cancer stained sections. All centromeric/CEP17 and HER2 gene signals obtained from separated stacked DIs were manually counted on the screen.

View Article and Find Full Text PDF