The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment.
View Article and Find Full Text PDFThis study shows the application of laser induced breakdown spectroscopy (LIBS) for waste electrical and electronic equipment (WEEE) investigation. Several emission spectra were obtained for 7 different mobiles from 4 different manufacturers. Using the emission spectra of the black components it was possible to see some differences among the manufacturers and some emission lines from organic elements and molecules (N, O, CN and C2) led to the highest contribution for this differentiation.
View Article and Find Full Text PDFThe influence of crater depth on plasma properties and laser-induced breakdown spectroscopy (LIBS) emission has been evaluated. Laser-induced plasmas were generated at the surface and at the bottom of different craters in a copper sample. Plasmas produced at the sample surface and at the bottom of the craters were spatially and temporally resolved.
View Article and Find Full Text PDFThe concentration of the main minerals present in human hair is measured on several subjects by Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) and compared with the results obtained through a commercial analytical laboratory. The possibility of using CF-LIBS for mineral analysis in hair is discussed, as well as its feasibility for the fast and inexpensive determination of the occurrence of heavy-metal poisoning in hair.
View Article and Find Full Text PDF