Human meiosis in oocytes entails an intricate regulation of the transcriptome to support late oocyte growth and early embryo development, both crucial to reproductive success. Currently, little is known about the co- and post-transcriptional mRNA processing mechanisms regulating the last meiotic phases, which contribute to transcriptome complexity and influence translation rates. We analyzed gene expression changes, splicing and pre-mRNA processing in an RNA sequencing set of 40 human oocytes at different meiotic maturation stages, matured both in vivo and in vitro.
View Article and Find Full Text PDFGaucher's disease (GD) is caused by mutations in the GBA1 gene, which encodes acid-β-glucosidase, an enzyme involved in the degradation of complex sphingolipids. While the non-neuronopathic aspects of the disease can be treated with enzyme replacement therapy (ERT), the early-onset neuronopathic form currently lacks therapeutic options and is lethal. We have developed an induced pluripotent stem cell (iPSc) model of neuronopathic GD.
View Article and Find Full Text PDFThe finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133(+) cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers.
View Article and Find Full Text PDFInduced pluripotent stem (iPS) cells have generated keen interest due to their potential use in regenerative medicine. They have been obtained from various cell types of both mice and humans by exogenous delivery of different combinations of Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28. The delivery of these transcription factors has mostly entailed the use of integrating viral vectors (retroviruses or lentiviruses), carrying the risk of both insertional mutagenesis and oncogenesis due to misexpression of these exogenous factors.
View Article and Find Full Text PDF