Publications by authors named "Montine T"

Numerous in vitro and cell culture experiments indicate that oxidative damage decreases astrocyte glutamate transport activity, and it has been proposed that products of lipid peroxidation, particularly 4-hydroxy-2-nonenal, may contribute to neurodegenerative diseases via inhibition of glutamate or glucose transporter activity. We have directly tested the hypothesis that lipid peroxidation products impair glutamate and glucose transport in vivo. Lipid peroxidation products that irreversibly modify protein lysyl residues caused a two- to sixfold elevation in extracellular glutamate in striatum and cerebral cortex of both freely moving and anesthetized rats undergoing microdialysis.

View Article and Find Full Text PDF

The mitochondrial 4977-bp common deletion has been reported in some studies to occur exclusively or with increased frequency in the midbrain of patients with Parkinson's disease (PD). Other studies could not confirm these results; rather, it was suggested that the mitochondrial common deletion is associated with aging in the midbrain and not PD. One possible explanation for these conflicting results is the difficulty in quantifying mitochondrial DNA deletions or mutations in the whole midbrain or substantia nigra (SN) while only a subset of midbrain neurons degenerate in PD.

View Article and Find Full Text PDF

Oxidative stress can impair proteasome function, both of which are features of neurodegenerative diseases. Inhibition of proteasome function leads to protein accumulation and cell death. We discovered recently the formation of highly reactive g-ketoaldehydes, isoketals (IsoKs), and neuroketals (NeuroKs) as products of the isoprostane and neuroprostane pathways of free radical-induced lipid peroxidation that are analogous to cyclooxygenase-derived levuglandins (LGs).

View Article and Find Full Text PDF

Dopamine oxidation is proposed to be a significant contributor to mesostriatal dopaminergic neurodegeneration, although the mechanisms are not fully resolved. Recent results from in vitro and in vivo models have suggested that some products from mercapturic acid pathway (MAP) metabolism of oxidized dopamine (DA) may contribute to dopaminergic neurodegeneration, and that at least one product of this pathway, 5-S-cysteinyldopamine (Cys-DA), is elevated in patients with advanced Parkinson's disease (PD). Here we review recent findings on MAP enzymes and their products in rodent brain and in diseased regions of brain from patients with mesostriatal dopaminergic neurodegeneration.

View Article and Find Full Text PDF

Epidemiological and clinical trial data indicate that at least some non-steroidal anti-inflammatory drugs (NSAIDs) reduce the risk of developing Alzheimer's disease (AD). Advancing age is the most robust risk factor for AD. If NSAIDs mitigate the initiation of AD by affecting processes of aging, and if the target of NSAIDs are cyclooxygenases (COX), then COX activity would be hypothesized to increase with advancing age in brain regions affected by AD.

View Article and Find Full Text PDF

Multiple lines of evidence indicate that oxidative stress is a critical pathogenic factor in Parkinson disease (PD) and diffuse Lewy body disease (DLBD). Previously, we demonstrated increased levels of redox-active iron in Lewy bodies, and that Lewy bodies accumulate advanced glycation end-products. To further characterize the role of oxidative stress in diseases with Lewy body formation, we examined immunocytochemically eight cases of PD and five cases of DLBD for adducts of the lipid peroxidation adduct 4-hydroxy-2-nonenal, and for N(epsilon)-(carboxymethyl)lysine (CML).

View Article and Find Full Text PDF

4-Hydroxy-2-nonenal (HNE) has been recognized as reactive product of lipid peroxidation and has been suggested to play a role in the pathogenesis in several common diseases as well as injuries caused by environmental toxicants. Although formed intracellularly in vivo, for practical reasons this molecule is applied extracellularly in order to analyze its biological effects. The focus of this study was to develop an approach that would enable intracellular HNE production in the absence of the many other products and processes that occur in cells experiencing generalized oxidative stress.

View Article and Find Full Text PDF

Background: The F(2)-isoprostanes (IsoPs) are a series of novel prostaglandin (PG)-like compounds generated from the free radical catalyzed peroxidation of arachidonic acid. One IsoP, 15-F(2t)-IsoP (8-iso-PGF(2alpha)), has been shown to be formed in abundance in vivo and to exert potent biological activity.

Methods: As a means to assess the endogenous production of this compound, we previously developed a method to quantify the major urinary metabolite of 15-F(2t)-IsoP, 2,3-dinor-5,6-dihydro-15-F(2t)-IsoP (2,3-dinor-5,6-dihydro-8-iso-PGF(2alpha), 15-F(2t)-IsoP-M ), by gas chromotography (GC)/negative ion chemical ionization mass spectrometry (MS) employing stable isotope dilution methodology.

View Article and Find Full Text PDF

Recent results have suggested that some products of mercapturic acid pathway (MAP) metabolism of oxidized dopamine (DA) may contribute to mesostriatal dopaminergic neurodegeneration, and that at least one product, 5-S-cysteinyldopamine (Cys-DA), is elevated in patients with advanced Parkinson's disease (PD) who have been treated with L-DOPA. Here we investigated MAP enzymes and products in the midbrain and striatum of control individuals and patients with dementia with Lewy bodies (DLB) who had less severe dopaminergic degeneration than PD patients and who were not treated with L-DOPA. We also determined the biological activity of MAP metabolites of oxidized DA using primary rat mesencephalic cultures, rat cerebral synaptosomes, and rat striatum in vivo microdialysis.

View Article and Find Full Text PDF

Elevated levels of oxidative stress or decreased antioxidant defense mechanisms may underlie the regionally increased oxidative damage to brain observed in many neurodegenerative disorders. Phase I detoxification pathways for reactive aldehydes generated from lipid peroxidation include aldehyde dehydrogenases, alcohol dehydrogenases and aldo-keto reductases (AKR). In the present study, we examined the cellular expression of AKR family member, succinic semialdehyde reductase (AKR7A2) that reduces toxic aldehydes as well as catalyzing the biosynthesis of the neuromodulator gamma-hydroxybutyrate (GHB).

View Article and Find Full Text PDF

Cerebral oxidative damage is a feature of aging and is increased in a number of neurodegenerative diseases. We pursued the gene-environment interaction of lack of apolipoprotein E (apoE) and modulation of dietary alpha-tocopherol on cerebral oxidative damage in aged male and female mice by quantifying the major isomers of cerebral isoprostanes, derived from arachidonic acid (AA) oxidation, and neuroprostanes, derived from docosahexaenoic acid (DHA) oxidation. Mice fed alpha-tocopherol-deficient, normal, or -supplemented diet had undetectable, 4486 +/- 215, or 6406 +/- 254 ng of alpha-tocopherol per gram of brain tissue (p < 0.

View Article and Find Full Text PDF

A reactive intermediate generated by lipid peroxidation, 4-hydroxy-2-nonenal (HNE), has received considerable attention as a potential effector of oxidative damage and Abeta peptide-mediated neurotoxicity in Alzheimer disease (AD). However, little is known about aldo-keto oxidoreductases, a group of enzymes that constitute a major detoxifying pathway for HNE and related reactive aldehydes in human brain. We have determined the regional, cellular, and class distribution in human brain of the 4 major aldo-keto oxidoreductases that detoxify HNE: aldehyde dehydrogenase (ALDH): aldose reductase; aldehyde reductase: and alcohol dehydrogenase (ADH).

View Article and Find Full Text PDF

Glutathione-S-transferases (GSTs) are a superfamily of enzymes that function to catalyze the nucleophilic attack of glutathione on electrophilic groups of a second substrate. GSTs are present in many organs and have been implicated in the detoxification of endogenous alpha, beta unsaturated aldehydes, including 4-hydroxynonenal (HNE). Exogenous GST protects hippocampal neurons against HNE in culture.

View Article and Find Full Text PDF

Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds (neuroketals) are also formed via the neuroprostane pathway.

View Article and Find Full Text PDF

Lipid peroxidation is elevated in diseased regions of brain in several neurodegenerative diseases. Acrolein (2-propenal) is a major cytotoxic product of lipid peroxidation and its adduction to neuronal proteins has been demonstrated in diseased brain regions from patients with Alzheimer's disease. Mitochondrial abnormalities are implicated in several neurodegenerative disorders, and mitochondria are targets of alkenal adduction in vivo.

View Article and Find Full Text PDF

Objective: To test the hypothesis that quantification of cerebrospinal fluid (CSF) F(2)-isoprostanes (F(2)-IsoPs), in vivo biomarkers of free radical damage, along with CSF Abeta(42) and tau levels improves laboratory diagnostic accuracy for Alzheimer disease (AD).

Participants: Patients with probable AD (n = 19), dementias other than AD (n = 8), and age-matched controls (n = 10).

Main Outcome Measures: Cerebrospinal fluid concentrations of Abeta(42) and tau were determined by a commercially available test (Athena Diagnostics, Worcester, Mass).

View Article and Find Full Text PDF

Background: While metabolically generated oxidants are produced locally in experimental glomerular diseases, little is still known of their significance and the respective scavenger systems in human glomerular diseases.

Methods: Here we studied kidneys from patients with congenital nephrotic syndrome of the Finnish type (CNF), a human model disease of isolated proteinuria. Expression of specific mRNAs for a major antioxidant system against lipoperoxidation [phospholipid hydroperoxide glutathione peroxidase (PHGPx)] and for mitochondrial proteins were studied in Northern blotting together with analysis of PHGPx in semiquantitative reverse transcription-polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

Isoprostanes (IsoP) are produced exclusively from free radical damage to arachidonic acid, a fatty acid that is evenly distributed throughout white matter and gray matter, whereas neuroprostanes (NPs) are generated analogously from docosahexaenoic acid (DHA), a fatty acid enriched in gray matter where it is concentrated in neurons. IsoP and NPs derive from endoperoxide intermediates that isomerize to D/E-ring forms or that are reduced to F-ring compounds. We quantified F-ring and D/E-ring IsoP and NPs in temporal and parietal cortex, hippocampus, and cerebellum of nine definite Alzheimer's disease (AD) patients and 11 age-matched controls.

View Article and Find Full Text PDF

Pathological and biochemical studies have consistently associated endogenous catechol oxidation with dopaminergic neurodegeneration in Parkinson's disease (PD). Recently, it has been proposed that products of catechol oxidation, the catechol thioethers, may contribute to dopaminergic neurodegeneration. In other organ systems, thioether cytotoxicity is influenced profoundly by the mercapturic acid pathway.

View Article and Find Full Text PDF

Cerebral spinal fluid (CSF) lipoproteins have become a focus of research since the observation that inheritance of particular alleles of the apolipoprotein E gene affects the risk of Alzheimer's disease (AD). There is evidence of increased lipid peroxidation in CSF lipoproteins from patients with AD, but the biological significance of this observation is not known. A characteristic of the AD brain is a disturbance of the neuronal microtubule organization.

View Article and Find Full Text PDF

The pathological consequences of herpes simplex virus type 1 (HSV-1) latency in the nervous system are not well understood. To determine whether acute and latent HSV-1 infections of the nervous system are associated with oxidative damage, mice were inoculated with HSV-1 by the corneal route, and the extent of viral infection and oxidative damage in trigeminal ganglia and brain was assessed at 7, 90, and 220 days after inoculation. Abundant HSV-1 protein expression in the nervous system was observed in neurons and non-neuronal cells at 7 days after inoculation, consistent with viral replication and spread through the trigeminal and olfactory systems.

View Article and Find Full Text PDF

Increased generation of neurotoxic lipid peroxidation products is proposed to contribute to the pathogenesis of Alzheimer's disease (AD). Current antioxidant therapies are directed at limiting propagation of brain lipid peroxidation. Another approach would be to scavenge the reactive aldehyde products of lipid peroxidation.

View Article and Find Full Text PDF

Although alpha-synuclein (alpha-syn) has been implicated as a major component of the abnormal filaments that form glial cytoplasmic inclusions (GCIs) in multiple system atrophy (MSA), it is uncertain if GCIs are homogenous and contain full-length alpha-syn. Since this has implications for hypotheses about the pathogenesis of GCIs, we used a novel panel of antibodies to defined regions throughout alpha-syn in immunohistochemical epitope mapping studies of GCIs in MSA brains. Although the immunostaining profile of GCIs with these antibodies was similar for all MSA brains, there were significant differences in the immunoreactivity of the alpha-syn epitopes detected in GCIs.

View Article and Find Full Text PDF