Publications by authors named "Montgomery Martin"

Health Canada approved pembrolizumab in the first-line setting for advanced non-small-cell lung cancer with PD-L1 ≥ 50% and no EGFR/ALK aberration. The keynote 024 trial showed 55% of such patients progress with pembrolizumab monotherapy. We propose that the combination of baseline CT and clinical factors can help identify those patients who may progress.

View Article and Find Full Text PDF

Background: Detection of skeletal metastases in patients with prostate cancer or breast cancer remains a major clinical challenge. We aimed to compare the diagnostic performance of Tc-methylene diphosphonate (Tc-MDP) single-photon emission CT (SPECT) and F-sodium fluoride (F-NaF) PET-CT for the detection of osseous metastases in patients with high-risk prostate or breast cancer.

Methods: MITNEC-A1 was a prospective, multicentre, single-cohort, phase 3 trial conducted in ten hospitals across Canada.

View Article and Find Full Text PDF

The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from This analysis confirms features in a prior description of the structure of the enzyme, but it also describes other highly significant attributes not recognized before that are crucial for understanding the mechanism and regulation of the mycobacterial enzyme. First, we resolved not only the three main states in the catalytic cycle described before but also eight substates that portray structural and mechanistic changes occurring during a 360° catalytic cycle. Second, a mechanism of auto-inhibition of ATP hydrolysis involves not only the engagement of the C-terminal region of an α-subunit in a loop in the γ-subunit, as proposed before, but also a "fail-safe" mechanism involving the b'-subunit in the peripheral stalk that enhances engagement.

View Article and Find Full Text PDF

Radiopaque lesions of the jaw are myriad in type and occasionally protean in appearance. In turn, the radiologic analysis of these lesions requires a systematic approach and a broad consideration of clinical and imaging characteristics to enable reliable radiologic diagnosis. Initially categorizing lesions by attenuation pattern provides a practical framework for organizing radiopaque jaw lesions that also reflects important tissue characteristics.

View Article and Find Full Text PDF

The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other.

View Article and Find Full Text PDF

Lymphomas affecting the bones of the jaws, although less frequent than carcinomas, can both present radiologically as carcinomas in addition to the more frequent "periapical-radiolucencies-of-inflammatory-origin" (PRIOs). Certainly those lymphomas arising within the maxillary alveolus have a short period of prior awareness before presentation, denoting an aggressive process. Half are provisionally diagnosed as carcinomas and the other half as PRIOs.

View Article and Find Full Text PDF

The adenosine triphosphate (ATP) synthase in human mitochondria is a membrane bound assembly of 29 proteins of 18 kinds organized into F-catalytic, peripheral stalk (PS), and c-rotor ring modules. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, imported into the mitochondrial matrix, and assembled into the complex with the mitochondrial gene products ATP6 and ATP8. Intermediate vestigial ATPase complexes formed by disruption of nuclear genes for individual subunits provide a description of how the various domains are introduced into the enzyme.

View Article and Find Full Text PDF

The structure of the dimeric ATP synthase from bovine mitochondria determined in three rotational states by electron cryo-microscopy provides evidence that the proton uptake from the mitochondrial matrix via the proton inlet half channel proceeds via a Grotthus mechanism, and a similar mechanism may operate in the exit half channel. The structure has given information about the architecture and mechanical constitution and properties of the peripheral stalk, part of the membrane extrinsic region of the stator, and how the action of the peripheral stalk damps the side-to-side rocking motions that occur in the enzyme complex during the catalytic cycle. It also describes wedge structures in the membrane domains of each monomer, where the skeleton of each wedge is provided by three α-helices in the membrane domains of the b-subunit to which the supernumerary subunits e, f, and g and the membrane domain of subunit A6L are bound.

View Article and Find Full Text PDF

The crystal structure of the F-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity.

View Article and Find Full Text PDF

The crystal structure of the F-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from which hydrolyzes ATP very poorly. The structure of the αβ-component of the catalytic domain is similar to those in active F-ATPases in and However, its ε-subunit differs from those in these two active bacterial F-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. In and , the α-helices adopt an "up" state where the α-helices enter the αβ-domain and prevent the rotor from turning.

View Article and Find Full Text PDF

Introduction The addition of induction chemotherapy (IC) to the standard concurrent chemoradiotherapy (CCRT) is under consideration in locally advanced nasopharyngeal carcinoma (LANPC). To-date, no studies have reported primary gross tumour volume (GTVp) changes using gemcitabine and cisplatin as the IC phase in LANPC. We investigated the timing and magnitude of GTVp response throughout sequential gemcitabine and cisplatin IC and CCRT for LANPC.

View Article and Find Full Text PDF

The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa.

View Article and Find Full Text PDF

Objective: Extranodal lymphomas affecting the head and neck arise infrequently within the bones of the jaws. This is a report of a symptom-free patient whose general dentist detected a radiolucency as an incidental finding on conventional radiography.

Study Design: The conventional radiography of lesions in the maxilla displayed "floating teeth" indicative of malignancy.

View Article and Find Full Text PDF

The structure of the intact monomeric ATP synthase from the fungus, , has been solved by electron cryo-microscopy. The structure provides insights into the mechanical coupling of the transmembrane proton motive force across mitochondrial membranes in the synthesis of ATP. This mechanism requires a strong and integral stator, consisting of the catalytic αβ-domain, peripheral stalk, and, in the membrane domain, subunit a and associated supernumerary subunits, kept in contact with the rotor turning at speeds up to 350 Hz.

View Article and Find Full Text PDF

The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential.

View Article and Find Full Text PDF

The structure of the intact ATP synthase from the α-proteobacterium Paracoccus denitrificans, inhibited by its natural regulatory ζ-protein, has been solved by X-ray crystallography at 4.0 Å resolution. The ζ-protein is bound via its N-terminal α-helix in a catalytic interface in the F1 domain.

View Article and Find Full Text PDF

The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase.

View Article and Find Full Text PDF

The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described.

View Article and Find Full Text PDF

The rotation of the central stalk of F1-ATPase is driven by energy derived from the sequential binding of an ATP molecule to its three catalytic sites and the release of the products of hydrolysis. In human F1-ATPase, each 360° rotation consists of three 120° steps composed of substeps of about 65°, 25°, and 30°, with intervening ATP binding, phosphate release, and catalytic dwells, respectively. The F1-ATPase inhibitor protein, IF1, halts the rotary cycle at the catalytic dwell.

View Article and Find Full Text PDF

The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force.

View Article and Find Full Text PDF

The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits.

View Article and Find Full Text PDF

The hydrolysis of ATP by the ATP synthase in mitochondria is inhibited by a protein called IF1. Bovine IF1 has 84 amino acids, and its N-terminal inhibitory region is intrinsically disordered. In a known structure of bovine F1-ATPase inhibited with residues 1-60 of IF1, the inhibitory region from residues 1-50 is mainly α-helical and buried deeply at the α(DP)β(DP)-catalytic interface, where it forms extensive interactions with five of the nine subunits of F1-ATPase but mainly with the β(DP)-subunit.

View Article and Find Full Text PDF

The structure of F₁-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF₁ has been determined at 2.5 Å resolution. The inhibitory region of IF₁ from residues 1 to 36 is entrapped between the C-terminal domains of the α(DP)- and β(DP)-subunits in one of the three catalytic interfaces of the enzyme.

View Article and Find Full Text PDF