Targeting intracellular inhibiting proteins has been revealed to be a promising strategy to improve CD8 T cell anti-tumor efficacy. Here, we are focusing on intracellular inhibiting proteins specific to TCR signaling: DOK1 and DOK2 expressed in T cells. We hypothesized that depletion of intracellular inhibition checkpoint DOK1 and DOK2 could improve CD8 T-cell based cancer therapies.
View Article and Find Full Text PDFFanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan.
View Article and Find Full Text PDFCancer cells utilize the main de novo pathway and the alternative salvage pathway for deoxyribonucleotide biosynthesis to achieve adequate nucleotide pools. Deoxycytidine kinase is the rate-limiting enzyme of the salvage pathway and it has recently emerged as a target for anti-proliferative therapies for cancers where it is essential. Here, we present the development of a potent inhibitor applying an iterative multidisciplinary approach, which relies on computational design coupled with experimental evaluations.
View Article and Find Full Text PDFB-cell acute lymphoblastic leukemia (B-ALL) reflects the malignant counterpart of developing B cells in the bone marrow (BM). Despite tremendous progress in B-ALL treatment, the overall survival of adults at diagnosis and patients at all ages after relapse remains poor. Galectin-1 (GAL1) expressed by BM supportive niches delivers proliferation signals to normal pre-B cells through interaction with the pre-B cell receptor (pre-BCR).
View Article and Find Full Text PDFDifferentially screening the Fr-PPIChem chemical library on the bromodomain and extra-terminal (BET) BRD4-BDII versus -BDI bromodomains led to the discovery of a BDII-selective tetrahydropyridothienopyrimidinone (THPTP)-based compound. Structure-activity relationship (SAR) and hit-to-lead approaches allowed us to develop CRCM5484, a potent inhibitor of BET proteins with a preferential and 475-fold selectivity for the second bromodomain of the BRD3 protein (BRD3-BDII) over its first bromodomain (BRD3-BDI). Its very low activity was demonstrated in various cell-based assays, corresponding with recent data describing other selective BDII compounds.
View Article and Find Full Text PDFMutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells.
View Article and Find Full Text PDFTargeted next-generation sequencing (tNGS) and ex vivo drug sensitivity/resistance profiling (DSRP) have laid foundations defining the functional genomic landscape of acute myeloid leukemia (AML) and premises of personalized medicine to guide treatment options for patients with aggressive and/or chemorefractory hematological malignancies. Here, we have assessed the feasibility of a tailored treatment strategy (TTS) guided by systematic parallel ex vivo DSRP and tNGS for patients with relapsed/refractory AML (number NCT02619071). A TTS issued by an institutional personalized committee could be achieved for 47/55 included patients (85%), 5 based on tNGS only, 6 on DSRP only, while 36 could be proposed on the basis of both, yielding more options and a better rationale.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) originates from hematopoietic stem and progenitor cells that acquire somatic mutations, leading to disease and clonogenic evolution. AML is characterized by accumulation of immature myeloid cells in the bone marrow and phenotypic cellular heterogeneity reflective of normal hematopoietic differentiation. Here, we show that JAM-C expression defines a subset of leukemic cells endowed with leukemia-initiating cell activity (LIC).
View Article and Find Full Text PDFChemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis , we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs.
View Article and Find Full Text PDF