Publications by authors named "Monteagudo S"

Osteoarthritis is the most common joint disease and a global leading cause of pain and disability. Current treatment is limited to symptom relief, yet there is no disease-modifying therapy. Its multifactorial etiology includes excessive activation of Wnt signaling, but how Wnt causes joint destruction remains poorly understood.

View Article and Find Full Text PDF

Objectives: Optimizing rehabilitation strategies for osteoarthritis necessitates a comprehensive understanding of chondrocytes' mechanoresponse in both health and disease, especially in the context of the interplay between loading and key pathways involved in osteoarthritis (OA) development, like canonical Wnt signaling. This study aims to elucidate the role of Wnt signaling in the mechanoresponsiveness of healthy and osteoarthritic human cartilage.

Methods: We used an ex-vivo model involving short-term physiological mechanical loading of human cartilage explants.

View Article and Find Full Text PDF

Objectives: As more has become known of the pathophysiology of osteoarthritis (OA), evidence that inflammation plays a critical role in its development and progression has accumulated. Here, we aim to review current knowledge of the complex inflammatory network in the OA joint.

Design: This narrative review is presented in three main sections: local inflammation, systemic inflammation, and therapeutic implications.

View Article and Find Full Text PDF

Osteoarthritis is the most common chronic joint disease characterized by progressive damage to the joints, leading to pain and loss of function. There is currently no cure or disease-modifying therapy for osteoarthritis. Hence, the increasing disease prevalence linked with ageing and obesity represents a substantial socio-economic burden.

View Article and Find Full Text PDF

Objectives: In osteoarthritis, methylation of lysine 79 on histone H3 (H3K79me), a protective epigenetic mechanism, is reduced. Histone methylation levels are dynamically regulated by histone methyltransferases and demethylases. Here, we aimed to identify which histone demethylases regulate H3K79me in cartilage and investigate whether their targeting protects against osteoarthritis.

View Article and Find Full Text PDF

Objectives: ANP32A is a key protector of cartilage health, via preventing oxidative stress and Wnt hyper-activation. We aimed to unravel how ANP32A is regulated in cartilage.

Methods: A bioinformatics pipeline was applied to identify regulators of ANP32A.

View Article and Find Full Text PDF

Objectives: To investigate how ANP32A, previously linked to the antioxidant response, regulates Wnt signaling as unraveled by transcriptome analysis of Anp32a-deficient mouse articular cartilage, and its implications for osteoarthritis (OA) and diseases beyond the joint.

Methods: Anp32a knockdown chondrogenic ATDC5 cells were cultured in micromasses. Wnt target genes, differentiation markers and matrix deposition were quantified.

View Article and Find Full Text PDF

Osteoarthritis is the most prevalent joint disease worldwide, and it is a leading source of pain and disability. To date, this disease lacks curative treatment, as underlying molecular mechanisms remain largely unknown. The histone methyltransferase DOT1L protects against osteoarthritis, and DOT1L-mediated H3K79 methylation is reduced in human and mouse osteoarthritic joints.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common chronic joint disorder worldwide, with a high personal burden for the patients and an important socio-economic impact. Current therapies are largely limited to pain management and rehabilitation and exercise strategies. For advanced cases, joint replacement surgery may be the only option.

View Article and Find Full Text PDF

Purpose: To investigate the efficacy and tolerability of perampanel (PER) when administered as a first add-on therapy to patients with focal epilepsy or idiopathic generalized epilepsy (IGE) taking one other antiseizure drug (ASD).

Methods: This multicentre, retrospective, one-year observational study collected data from patients (≥12 years) who initiated treatment with PER as first add-on therapy. Patients had to be experiencing inadequate seizure control on ASD monotherapy and tried ≤3 ASD monotherapies before initiating PER.

View Article and Find Full Text PDF

Osteoarthritis is the most common chronic joint disease affecting millions of people worldwide and a leading cause of pain and disability. Increasing incidence of obesity and aging of the population are two factors that suggest that the impact of osteoarthritis will further increase at the society level. Currently, there are no drugs available that can manage both structural damage to the joint or the associated pain.

View Article and Find Full Text PDF

Objective: Inflammation and innate immune responses may contribute to development and progression of Osteoarthritis (OA). Chondrocytes are the sole cell type of the articular cartilage and produce extracellular-matrix molecules. How inflammatory mediators reach chondrocytes is incompletely understood.

View Article and Find Full Text PDF

Objective: Exostosin-1 (Ext1) encodes a glycosyltransferase required for heparan sulfate (HS) chain elongation in HS-proteoglycan biosynthesis. HS chains serve as binding partners for signaling proteins, affecting their distribution and activity. The Wnt/β-catenin pathway emerged as critical regulator of chondrogenesis.

View Article and Find Full Text PDF

Objective: We earlier identified that the histone methyltransferase Disruptor of telomeric silencing 1-like (DOT1L) is as a master protector of cartilage health via limiting excessive activation of the Wnt pathway. However, cartilage-specific homozygous Dot1l knockout mice exhibited a severe growth phenotype and perinatal death, which hampered their use in induced or ageing models of osteoarthritis (OA). The aim of this study was to generate and examine haploinsufficient and inducible conditional Dot1l-deficient mouse models to evaluate the importance of DOT1L during post-traumatic or ageing-associated OA onset and progression.

View Article and Find Full Text PDF

Osteoarthritis is the most common joint disorder with increasing global prevalence due to aging of the population. Current therapy is limited to symptom relief, yet there is no cure. Its multifactorial etiology includes oxidative stress and overproduction of reactive oxygen species, but the regulation of these processes in the joint is insufficiently understood.

View Article and Find Full Text PDF

Tissue calcification is an important physiological process required for the normal structure and function of bone. However, ectopic or excessive calcification contributes to diseases such as chondrocalcinosis, to calcium deposits in the skin or to vascular calcification. SMOC2 is a member of the BM-40/osteonectin family of calcium-binding secreted matricellular proteins.

View Article and Find Full Text PDF

Objectives: Suramin is an old drug used for the treatment of African sleeping sickness. We investigated therapeutic repositioning of suramin to protect against cartilage damage, as suramin may interact with tissue inhibitor of metalloproteinase-3 (TIMP3).

Methods: In vitro extracellular matrix (ECM) accumulation and turnover in the presence or absence of suramin were studied in the ATDC5 micromass model of chondrogenesis and in pellet cultures of human articular chondrocytes from osteoarthritis and control patients, by gene expression, protein analysis, colorimetric staining, immunoprecipitation, fluorimetric analysis and immunohistochemistry.

View Article and Find Full Text PDF

Wnt signalling pathways have key roles in joint development, homeostasis and disease, particularly in osteoarthritis. New data is starting to reveal the importance of tightly regulating canonical Wnt signalling pathway activation to maintain homeostasis and health in articular cartilage. In addition to the presence of different Wnt antagonists that limit pathway activation in articular cartilage, the reciprocal crosstalk between the canonical and non-canonical cascades and competitive antagonism between different Wnt ligands seem to be critical in restraining excessive Wnt pathway activation.

View Article and Find Full Text PDF

Osteoarthritis is a severe and common rheumatic and skeletal disease for which currently no specific drugs are available. The Wnt signaling pathway modulates key biological processes in development, growth, homeostasis, and disease, particularly in the joints and bone. Excessive activation of the Wnt signaling pathway in the articular cartilage has been clearly associated with the onset and severity of osteoarthritis.

View Article and Find Full Text PDF

Osteoarthritis is the most prevalent and crippling joint disease, and lacks curative treatment, as the underlying molecular basis is unclear. Here, we show that DOT1L, an enzyme involved in histone methylation, is a master protector of cartilage health. Loss of DOT1L disrupts the molecular signature of healthy chondrocytes in vitro and causes osteoarthritis in mice.

View Article and Find Full Text PDF

The poor access of therapeutic drugs and genetic material into the central nervous system due to the presence of the blood-brain barrier often limits the development of effective noninvasive treatments and diagnoses of neurological disorders. Moreover, the delivery of genetic material into neuronal cells remains a challenge because of the intrinsic difficulty in transfecting this cell type. Nanotechnology has arisen as a promising tool to provide solutions for this problem.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) constitutes an excellent way of knocking down genes. However, it requires the use of delivery systems to reach the target cells, especially to neuronal cells. Dendrimers are one of the most widely used synthetic nanocarriers for siRNA delivery.

View Article and Find Full Text PDF

Aims: The aim of this work was to study if a G1-polyamidoamine dendrimer/siRNA dendriplex can remove the p42 MAPK protein in prostate cancer cells and to potentiate the anti-tumoral effect of the antidiabetic drug metformin and taxane docetaxel.

Material & Methods: The dendriplex uptake was studied using flow cytometry analysis. Transfection efficiency was determined by measuring p42 MAPK mRNA and protein levels.

View Article and Find Full Text PDF

A novel hybrid dendrimer (TRANSGEDEN) that combines a conjugated rigid polyphenylenevinylene (PPV) core with flexible polyamidoamine (PAMAM) branches at the surface was synthesized and characterized. The potential of this material as a nonviral gene delivery system was also examined, and it was observed that dendriplexes formed by TRANSGEDEN and small interfering ribonucleic acids (siRNAs) can be incorporated into >90% of neuronal cells without any toxicity up to a dendrimer concentration of 3 μM. TRANSGEDEN was used to deliver a specific siRNA to rat cerebellar granular neurons (CGNs) to knock down the cofilin-1 protein.

View Article and Find Full Text PDF