Osteoarthritis (OA) is a highly prevalent degenerative joint condition that disproportionately affects females. The pathophysiology of the disease is not well understood, which makes diagnosis and treatment difficult. Given the physical connection of synovial fluid (SF) with articular tissues, the SF's composition can reflect relevant biological modifications, and has therefore been a focus of research.
View Article and Find Full Text PDFWomen are at a significantly higher risk of developing osteoarthritis (OA) compared to males. The pathogenesis of osteoarthritis (OA) in women is poorly understood. Extracellular vesicles (EVs) have been shown to play an essential role in numerous signaling processes during the pathogenesis of age-related diseases via paracrine signaling.
View Article and Find Full Text PDFMechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging.
View Article and Find Full Text PDFStromal cell-derived factor-1 (SDF-1 or CXCL12) is a cytokine secreted by cells including bone marrow stromal cells (BMSCs). SDF-1 plays a vital role in BMSC migration, survival, and differentiation. Our group previously reported the role of SDF-1 in osteogenic differentiation in vitro and bone formation in vivo; however, our understanding of the post-transcriptional regulatory mechanism of SDF-1 remains poor.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic degenerative joint disease. The pathogenesis is poorly understood. What is known is that OA is characterized by imbalance in anabolic and catabolic gene expression in articular chondrocytes.
View Article and Find Full Text PDFThe aim of this study is to review all the published clinical trials on autologous bone marrow mesenchymal stem cells (BM-MSCs) in the repair of cartilage lesions of the knee. We performed a comprehensive search in three electronic databases: PubMed, Medline via Ovid, and Web of Science. A systematic review was conducted according to the guidelines of PRISMA protocol and the Cochrane Handbook for Systematic Reviews of Interventions.
View Article and Find Full Text PDFMicroRNA's are small non-coding RNAs that regulate the expression of genes by targeting the 3' UTR's of mRNA. Studies reveal that miRNAs play a pivotal role in normal musculoskeletal function such as mesenchymal stem cell differentiation, survivability and apoptosis, osteogenesis, and chondrogenesis. Changes in normal miRNA expression have been linked to a number of pathological disease processes.
View Article and Find Full Text PDFOsteoarthritis (OA) is one of the most common chronic conditions in the world today. It results in breakdown of cartilage in joints and causes the patient to experience intense pain and even disability. The pathophysiology of OA is not fully understood; therefore, there is currently no cure for OA.
View Article and Find Full Text PDFExcept for the essential amino acids (AAs), much of the focus on adequate dietary protein intake has been on total nitrogen and caloric intake rather than AA composition. Recent data, however, demonstrate that "amino-acid sensing" can occur through either intracellular or extracellular nutrient-sensing mechanisms. In particular, members of the class 3 G-protein coupled receptor family, like the calcium-sensing receptor are known to preferentially bind specific AAs, which then modulate receptor activation by calcium ions and thus potentially impact bone turnover.
View Article and Find Full Text PDFOsteoarthritis is a debilitating disease that has increased in prevalence across the world due to the aging population. Currently, physicians use a plethora of treatment strategies to try and slow down the progression of the disease, but none have been shown to ubiquitously treat and cure the disease. One of the strategies uses the high molecular weight molecule hyaluronic acid as either an injectable or oral supplement for treatment.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small (18-25 nucleotides), noncoding RNAs that have been identified as potential regulators of bone marrow stromal cell (BMSC) proliferation, differentiation, and musculoskeletal development. Vitamin C is known to play a vital role in such types of biological processes through various different mechanisms by altering mRNA expression. We hypothesized that vitamin C mediates these biological processes partially through miRNA regulation.
View Article and Find Full Text PDFResearch into the biology of extracellular vesicles (EVs), including exosomes and microvesicles, has expanded significantly with advances in EV isolation techniques, a better understanding of the surface markers that characterize exosomes and microvesicles, and greater information derived from -omics approaches on the proteins, lipids, mRNAs, and microRNAs (miRNAs) transported by EVs. We have recently discovered a role for exosome-derived miRNAs in age-related bone loss and osteoarthritis, two conditions that impose a significant public health burden on the aging global population. Previous work has also revealed multiple roles for EVs and their miRNAs in muscle regeneration and congenital myopathies.
View Article and Find Full Text PDFAge-dependent bone loss occurs in humans and in several animal species, including rodents. The underlying causal mechanisms are probably multifactorial, although an age-associated increase in the generation of reactive oxygen species has been frequently implicated. We previously reported that aromatic amino acids function as antioxidants, are anabolic for bone, and that they may potentially play a protective role in an aging environment.
View Article and Find Full Text PDFThe pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets.
View Article and Find Full Text PDFOsteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFWithin the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors.
View Article and Find Full Text PDFVitamin C is an antioxidant that plays a vital role in various biological processes including bone formation. Previously, we reported that vitamin C is transported into bone marrow stromal cells (BMSCs) through the sodium dependent Vitamin C Transporter 2 (SVCT2) and this transporter plays an important role in osteogenic differentiation. Furthermore, this transporter is regulated by oxidative stress.
View Article and Find Full Text PDFAge-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function.
View Article and Find Full Text PDFVitamin C is a micro-nutrient which plays an important role in bone marrow stromal cell (BMSCs) differentiation to osteogenesis. This vitamin is transported into the BMSCs through the sodium dependent vitamin C transporter 2 (SVCT2). We previously reported that knockdown of the SVCT2 transporter decreases osteogenic differentiation.
View Article and Find Full Text PDFMyostatin, also referred to as growth and differentiation factor-8 (GDF-8), is expressed in muscle tissue where it functions to suppress myoblast proliferation and myofiber hypertrophy. Recently, myostatin and its receptor, the type IIB activin receptor (ActRIIB), were detected in the leg tendons of mice, and recombinant myostatin was shown to increase cellular proliferation and the expression of type 1 collagen in primary fibroblasts from mouse tendons. We sought to determine whether myostatin and its receptor were present in human anterior cruciate ligament (ACL) tissue, and if myostatin treatment had any effect on primary ACL fibroblasts.
View Article and Find Full Text PDFPurpose: Errors in femoral tunnel placement in anterior cruciate ligament (ACL) reconstruction can cause excessive length changes in the graft during knee flexion and extension, resulting in graft elongation during the postoperative period. To improve the accuracy of tunnel placement and to avoid graft impingement, a notchplasty is commonly performed. The purpose of this study was to determine the effects of varying the position of the femoral tunnel and of performing a 2-mm notchplasty of the lateral femoral condyle and roof of the intercondylar notch on excursion patterns of a bone-patellar tendon-bone graft.
View Article and Find Full Text PDFThe purpose of this study was to measure the effects of variation in placement of the femoral tunnel upon knee laxity, graft pretension required to restore normal anterior-posterior (AP) laxity and graft forces following anterior cruciate ligament (ACL) reconstruction. Two variants in tunnel position were studied: (1) AP position along the medial border of the lateral femoral condyle (at a standard 11 o'clock notch orientation) and (2) orientation along the arc of the femoral notch (o'clock position) at a fixed distance of 6-7 mm anterior to the posterior wall. AP laxity and forces in the native ACL were measured in fresh frozen cadaveric knee specimens during passive knee flexion-extension under the following modes of tibial loading: no external tibial force, anterior tibial force, varus-valgus moment, and internal-external tibial torque.
View Article and Find Full Text PDFNotchplasty is frequently performed in conjunction with anterior cruciate ligament reconstruction. Bench loading tests were performed on 26 fresh-frozen knee specimens to measure excursion of a bone-patellar tendon-bone graft, anterior-posterior laxity of the knee, and graft forces before and after performing a 2-mm and a 4-mm notchplasty. The mean intraarticular pretension required to restore normal anterior-posterior laxity at 30 degrees of flexion (laxity-matched pretension level) was 27 N before notchplasty, 48 N after 2-mm notchplasty, and 65 N after 4-mm notchplasty.
View Article and Find Full Text PDFPurpose: The purpose of this study was to determine the effects of rotating a bone-patellar tendon- bone allograft during anterior cruciate ligament reconstruction on anteroposterior (AP) knee laxity and forces developed within the graft.
Type Of Study: In vitro biomechanical study using human cadaveric knees.
Methods: Thirteen fresh-frozen knee specimens received bone-patella tendon-bone allografts that were pretensioned at 30 degrees of flexion to restore AP laxity to that of the intact knee.