The most common forms of tissue impairment are fracture bones and significant bone disorders caused by multiple traumas or normal aging. Surgical care sometimes necessitates the placement of a temporary or permanent prosthesis, which continues to be a challenge for orthopedic surgeons, including those with large bone defects. Electrospun scaffolds made from natural and synthetic nanofiber-based polymers are studied as natural extracellular matrix (ECM)-like scaffolds for tissue engineering.
View Article and Find Full Text PDFThe design of cheap and efficient oxygen reduction reaction (ORR) electrocatalysts is of a significant importance in sustainable and renewable energy technologies. Therefore, ORR catalysts with superb electrocatalytic activity and durability are becoming a necessity but still remain challenging. Herein, we report C/NiCo₂O₄ nanocomposite fibers fabricated by a straightforward electrospinning technique followed by a simple sintering process as a promising ORR electrocatalyst in alkaline condition.
View Article and Find Full Text PDFPorous metals are attractive due to its unique physical, mechanical, and new bone tissue ingrowth properties. In the present study, the production of highly porous Ti-6Al-4V parts by powder metallurgical technology and subsequently it's uses in in vitro bone tissue engineering is described. A space-holder method using carbamide with different particle size to produce parts with porosities between 35 and 70% were applied.
View Article and Find Full Text PDF