Textile industry wastewater containing toxic dyes and high COD poses environmental hazards and requires treatment before discharge. This study addresses the challenge of treating complex textile wastewater using a novel integrated system. The system combines sedimentation, screening, adsorption, and an optimized solar photo-Fenton process to provide a sustainable treatment solution.
View Article and Find Full Text PDFAdvanced oxidation process, via photo-catalytic oxidation process was demonstrated in this study as one of the promising techniques of simulated oily wastewater treatment. Several effective factors such as initial oil concentration, catalyst dose, stirring speed (rpm), pH value and hydrogen peroxide (HO) dose influencing on the photo-catalytic degradation rate of oily wastewater were investigated. The catalyst used in this work was titanium dioxide (TiO).
View Article and Find Full Text PDFAdvanced oxidation processes including UV, UV/H(2)O(2), Fenton reaction (Fe(II)/H(2)O(2)) and photo-Fenton process (Fe(II)/H(2)O(2)/UV) for the treatment of paper mill wastewater will be investigated. A comparison among these techniques is undertaken with respect to the decrease of chemical oxygen demand (COD) and total suspended solids (TSS) and the evolution of chloride ions. Optimum operating conditions for each process under study revealed the effect of the initial amounts of Fe(II) and hydrogen peroxide.
View Article and Find Full Text PDF