Publications by authors named "Montalban M"

The ongoing pursuit of efficient solar thermal energy systems has driven significant interest in the development of advanced nanofluids, particularly those utilizing carbon-based nanostructures such as graphene nanoplatelets (GNP) and carbon nanotubes (CNTs). These materials, when dispersed in base fluids like water or ionic liquids, have gained attention for their tunable thermophysical properties, including thermal conductivity, viscosity, and specific heat capacity. This has positioned them as promising candidates for enhancing the thermal performance of solar collectors.

View Article and Find Full Text PDF

This study presents new ionanofluids (INF) composed of 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) and graphene oxide (GO) nanoparticles which have been assessed for the first time in an experimental flat plate solar thermal collector (FPSC). For this purpose, four types of INFs were synthesized, maintaining a constant concentration of GO nanoparticles dispersed in different base fluids: ionic liquid (IL/GO), a mixture of ionic liquid and water in varying concentrations (IL-water (75-25)%/GO and IL-water (50-50)%/GO), and water (Water/GO). These four INFs were characterized and their thermophysical and physicochemical properties were determined.

View Article and Find Full Text PDF

Thermoplastic starch/polyvinyl alcohol (TPS/PVA) films have limitations for being used in long-term applications due to starch retrogradation. This leads to plasticizer migration, especially when low molecular weight plasticizers such as glycerol, are used. In this work, we employed mixtures of oligomers based on glycerol citrates with higher molecular weight than glycerol as plasticizers for potato-based TPS/PVA blends obtained by melt-mixing.

View Article and Find Full Text PDF

The anticancer drug ibrutinib (IB), also known as PCI-32765, is a compound that irreversibly inhibits Bruton's tyrosine kinase (BTK) and was initially developed as a treatment option for B-cell lineage neoplasms. Its action is not limited to B-cells, as it is expressed in all hematopoietic lineages and plays a crucial role in the tumor microenvironment. However, clinical trials with the drug have resulted in conflicting outcomes against solid tumors.

View Article and Find Full Text PDF

The first step towards the production and marketing of bioplastics based on renewable and sustainable materials is to know their behavior at a semi-industrial scale. For this reason, in this work, the properties of thermoplastic starch (TPS)/polyvinyl alcohol (PVA) films plasticized by a green solvent, as the 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) ionic liquid, produced by melt-mixing were studied. These blends were prepared with a different content of [Emim][Ac] (27.

View Article and Find Full Text PDF

The development of new biomaterials from natural fibres in the field of biomedicine have attracted great interest in recent years. One of the most studied fibres has been silk fibroin produced by the Bombyx mori worm, due to its excellent mechanical properties and its biodegradability and bioavailability. Among the different biomaterials that can be prepared from silk fibroin, hydrogels have attracted considerable attention due to their potential use in different fields, such as scaffolding, cell therapy and biomedical application.

View Article and Find Full Text PDF

A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine.

View Article and Find Full Text PDF

When the [Ru(-cymene)(μ-Cl)Cl] complex is made to react, in dichloromethane, with the following ligands: 2-aminobenzonitrile (2abn), 4-aminobenzonitrile (4abn), 2-aminopyridine (2ampy) and 4-aminopyridine (4ampy), after addition of hexane, the following compounds are obtained: [Ru(-cymene)Cl(2abn)] , [Ru(-cymene)Cl(4abn)] , [Ru(-cymene)Cl(2ampy] and [Ru(-cymene)Cl(μ-(4ampy)] . All the compounds are characterized by elemental analysis of carbon, hydrogen and nitrogen, proton nuclear magnetic resonance, COSY H-H, high-resolution mass spectrometry (ESI), thermogravimetry and single-crystal X-ray diffraction (the crystal structure of is reported and compared with the closely related literature of ). The cytotoxicity effects of complexes were described for cervical cancer HeLa cells via 3-(4.

View Article and Find Full Text PDF

Background: Dengue is endemic in many countries throughout the tropics and subtropics, and the disease causes substantial morbidity and health-care burdens in these regions. We previously compared antibody responses after one-dose, two-dose, or three-dose primary regimens with the only approved dengue vaccine CYD-TDV (Dengvaxia; Sanofi Pasteur, Lyon, France) in individuals aged 9 years and older with previous dengue exposure. In this study, we assessed the need for a CYD-TDV booster after these primary vaccination regimens.

View Article and Find Full Text PDF

In recent years, silk fibroin nanoparticles (SFNs) have been consolidated as drug delivery systems (DDSs) with multiple applications in personalized medicine. The design of a simple, inexpensive, and scalable preparation method is an objective pursued by many research groups. When the objective is to produce nanoparticles suitable for biomedical uses, their sterility is essential.

View Article and Find Full Text PDF

Rosmarinic acid (RA), one of the most important polyphenol-based antioxidants, has drawn increasing attention because of its remarkable bioactive properties, including anti-inflammatory, anticancer and antibacterial activities. The aim of this study was to synthesize and characterize RA-loaded silk fibroin nanoparticles (RA-SFNs) in terms of their physical-chemical features and composition, and to investigate their antitumor activity against human cervical carcinoma and breast cancer cell lines (HeLa and MCF-7). Compared with the free form, RA bioavailability was enhanced when the drug was adsorbed onto the surface of the silk fibroin nanoparticles (SFNs).

View Article and Find Full Text PDF
Article Synopsis
  • Variants in the LRRK2 gene are linked to a higher risk of developing Parkinson's disease.
  • A specific variant called G2019S increases LRRK2 activity, showing that LRRK2 inhibitors might help treat the disease.
  • Researchers created tests to measure LRRK2 levels and activity in cells and blood, finding that some people with different LRRK2 variants show less activity, which could help track changes in the disease.
View Article and Find Full Text PDF

Pathogenic bacteria have the ability to develop antibiotic resistance mechanisms. Their action consists mainly in the production of bacterial enzymes that inactivate antibiotics or the appearance of modifications that prevent the arrival of the drug at the target point or the alteration of the target point itself, becoming a growing problem for health systems. Chitosan-gold nanoparticles (Cs-AuNPs) have been shown as effective bactericidal materials avoiding damage to human cells.

View Article and Find Full Text PDF

Background: Three doses of the licensed tetravalent dengue vaccine CYD-TDV (Dengvaxia, Sanofi Pasteur, Lyon France) are immunogenic and effective against symptomatic dengue in individuals aged 9 years and older who are dengue seropositive. Previous trials have provided some evidence that antibody responses elicited after just one dose or two doses of CYD-TDV might be similar to those elicited after three doses. We compared antibody responses following one-dose, two-dose, and three-dose vaccination regimens in individuals who were dengue seropositive at baseline up to 1 year after the last injection.

View Article and Find Full Text PDF

In this work, the cytotoxic behavior of six ruthenium(II) complexes of stoichiometry [(η--cymene)RuClL] (I-VI), L = 4-cyanopyridine (I), 2-aminophenol (II), 4-aminophenol (III), pyridazine (IV), and [(--cymene)RuClL]PF; L = cyanopyridine (V), L = 2-aminophenol(VI) towards three cell lines was studied. Two of them, HeLa and MCF-7, are human carcinogenic cells from cervical carcinoma and human breast cancer, respectively. A comparison with healthy cells was carried out with BGM cells which are monkey epithelial cells of renal origin.

View Article and Find Full Text PDF

Objective: To identify markers of resistance to developing Parkinson disease (PD) among mutation carriers (+), we carried out metabolomic profiling in individuals with PD and unaffected controls (UC), with and without the mutation.

Methods: Plasma from 368 patients with PD and UC in the LRRK2 Cohort Consortium (LCC), comprising 118 +/PD+, 115 +/UC, 70 -/PD+, and 65 /UC, and CSF available from 68 of them, were analyzed by liquid chromatography with mass spectrometry. For 282 analytes quantified in plasma and CSF, we assessed differences among the 4 groups and interactions between and PD status, using analysis of covariance models adjusted by age, study site cohort, and sex, with value corrections for multiple comparisons.

View Article and Find Full Text PDF

Nanotechnology has enabled the development of novel therapeutic strategies such as targeted nanodrug delivery systems, control and stimulus-responsive release mechanisms, and the production of theranostic agents. As a prerequisite for the use of nanoparticles as drug delivery systems, the amount of loaded drug must be precisely quantified, a task for which two approaches are currently used. However, both approaches suffer from the inefficiencies of drug extraction and of the solid-liquid separation process, as well as from dilution errors.

View Article and Find Full Text PDF

Silk fibroin from caterpillar is an outstanding biocompatible polymer for the production of biomaterials. Its impressive combination of strength, flexibility, and degradability are related to the protein's secondary structure, which may be altered during the manufacture of the biomaterial. The present study looks at the silk fibroin secondary structure during nanoparticle production using ionic liquids and high-power ultrasound using novel infrared spectroscopic approaches.

View Article and Find Full Text PDF

The massive use of petroleum-based polymers and their improper waste treatment has brought on significant global environmental problems due to their non-biodegradable nature. Starch/poly(vinyl alcohol) (PVA) bioplastics are suitable substitutes for conventional polymers, such as polyethylene, due to their full biodegradability and excellent mechanical properties. Knowledge of the pollutant emissions during pyrolysis and combustion of starch/PVA films is important because they can arrive at landfills mixed with conventional polymers and be thermally degraded in uncontrolled fires.

View Article and Find Full Text PDF

Naringenin (NAR), a flavonoid present in a variety of fruits, vegetables and herbs, exhibits a wide range of pharmacological effects, including anticancer activity. Nevertheless, its application in cancer therapy is limited due to its low bioavailability at the tumour site because of its poor solubility in water and slow dissolution rate. To improve the therapeutic efficacy of NAR, emergent research is looking into using nanocarriers.

View Article and Find Full Text PDF

Several studies have stated that the process used for sericin removal, or degumming, from silk cocoons has a strong impact in the silk fibroin integrity and consequently in their mechanical or biochemical properties after processing it into several biomaterials (e.g. fibers, films or scaffolds) but still, there is a lack of information of the impact on the features of silk nanoparticles.

View Article and Find Full Text PDF

Starch/multi-walled carbon nanotube (MWCNT) films were prepared by casting using an ionic liquid (1-ethyl-3-methylimidazolium acetate, [emim][Ac]) as plasticizer for the first time. The effect of the MWCNT content (0.25-5 wt.

View Article and Find Full Text PDF

Dicationic ionic liquids (ILs) generally possess higher thermal and electrochemical stability than the analogous monocationic ILs, which makes them more suitable for high-temperature applications as solvents for organic reactions, lubricants or stationary phase in gas chromatography. However, knowledge on dicationic IL cytotoxicity is still scarce. Here we explore the cytotoxicity of twelve mono- and dicationic pyridinium-based ILs on HeLa, MCF-7, BGM and EA.

View Article and Find Full Text PDF

Thermoplastic starch (TPS) films are considered one of the most promising alternatives for replacing synthetic polymers in the packaging field due to the starch biodegradability, low cost, and abundant availability. However, starch granule composition, expressed in terms of amylose content and phosphate monoesters, and molecular weight of starch clearly affects some film properties. In this contribution, biodegradable TPS films made from potato, corn, wheat, and rice starch were prepared using the casting technique.

View Article and Find Full Text PDF

Starch films are gaining attention as substitutes of synthetic polymers due to their biodegradability and low cost. Some ionic liquids have been postulated as alternatives to glycerol, one of the best starch plasticizers, due to their great capacity to form hydrogen bonds with starch and hence great ability of preventing starch retrogradation and increasing film stability. In this work, [emim][Ac]-plasticized starch films were prepared from potato, corn and wheat starch.

View Article and Find Full Text PDF