: Type 2 diabetes (T2D) is one of the leading causes of mortality and is a public health challenge worldwide. Metformin is the first-choice treatment for T2D; its pharmacokinetics (PK) is facilitated by members of the solute carrier (SLC) superfamily of transporters, it is not metabolized, and it is excreted by the kidney. Although interindividual variability in metformin pharmacokinetics is documented in the Mexican population, its pharmacogenomics is still underexplored.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2023
Objective: Here we aimed to investigate the association of the Xq28 risk haplotype (H1) with susceptibility to childhood-onset systemic lupus erythematosus (SLE), and to compare its frequency and genetic structure in the Mexican population with those in other continental populations.
Methods: We genotyped 15 single-nucleotide variants (SNVs) that form the H1 haplotype, using TaqMan real-time PCR. The association analysis [case-control and transmission disequilibrium test (TDT)] included 376 cases and 400 adult controls, all of whom were mestizos (MEZ).
Genetic factors that affect variability in metformin response have been poorly studied in the Latin American population, despite its being the initial drug therapy for type 2 diabetes, one of the most prevalent diseases in that region. Metformin pharmacokinetics is carried out by members of the membrane transporters superfamily (SLCs), being the multidrug and toxin extrusion protein 1 (MATE1), one of the most studied. Some genetic variants in MATE1 have been associated with reduced in vitro metformin transport.
View Article and Find Full Text PDFAmerindian ancestry appears to be a risk factor for metabolic diseases (MetD), making Mexicans an ideal population to better understand the genetic architecture of metabolic health. In this study, we determine the association of genetic variants previously reported with metabolic entities, in two Mexican populations, including the largest sample of Amerindians reported to date. We investigated the association of eigth single-nucleotide polymorphisms (SNPs) in AKT1, GCKR, and SOCS3 genes with different metabolic traits in 1923 Mexican Amerindians (MAs) belonging to 57 ethnic groups, and 855 Mestizos (MEZs).
View Article and Find Full Text PDF