Semiconductor heterojunctions are an effective way to achieve efficient photocatalysts, as they can provide an adequate redox potential with visible light excitation. Several works have reported synergistic effects with nanoparticle semiconductor materials. The question is still open for thin film heterojunctions formed by stacked layers, as photocatalysis is considered a surface phenomenon.
View Article and Find Full Text PDFRecently, bismuth oxyiodide (BiOI) is an attractive semiconductor to use in heterogeneous photocatalysis processes. Unfortunately, BiOI individually shows limited photocatalytic efficiency, instability, and a quick recombination of electron/holes. Considering the practical application of this semiconductor, some studies show that synthetic zeolites provide good support for this photocatalyst.
View Article and Find Full Text PDFThe increasing interest in acquiring efficient visible-light active photocatalytic materials has led to the formation of heterojunctions with different combinations of semiconductors. Despite the fact that increasingly more complex structures are proposed, there are still many unclear factors affecting their performance and limiting their prompt implementation. In this work, we used the spray pyrolysis technique to deposit individual visible light-active BiOBr and BiOI films and formed the heterojunctions BiOBr-BiOI and BiOI-BiOBr to determine the effect of the stacking order of semiconductors.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2021
Surface enhanced Raman spectroscopy (SERS) is considered a versatile and multifunctional technique with the ability to detect molecules of different species at very low molar concentration. In this work, hierarchical ZnO microspheres (ZnO MSs) and Ag/ZnO MSs were fabricated and decorated by hydrothermal and photodeposition methods, respectively. For Ag deposition, precursor molar concentration (1.
View Article and Find Full Text PDFThe vapor-liquid-solid (VLS) process was applied to fabricate zinc oxide nanowires (ZnO NWs) with a different aspect ratio (AR), morphological, and optical properties. The ZnO NWs were grown on a system that contains a quartz substrate with transparent conductive oxide (TCO) thin film followed by an Al-doped ZnO (AZO) seed layer; both films were grown by magnetron sputtering at room temperature. It was found that the ZnO NWs presented high crystalline quality and vertical orientation from different structural and morphological characterizations.
View Article and Find Full Text PDFBismuth oxyhalides (BiOX, where X = F, Cl, Br, I) are interesting materials due to their layered structure, which can be useful for different applications. In this work, we present the synthesis of the complete BiOX family in the thin film form. The tetragonal phase Bi2O3 film deposited onto a glass substrate was transformed into BiOF, BiOCl or BiOBr by a simple immersion at ambient temperature in a halide (X = F, Cl, Br) containing solution.
View Article and Find Full Text PDFSeveral techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders.
View Article and Find Full Text PDFBismuth oxide thin films were obtained by the spray pyrolysis method using bismuth acetate as the precursor salt. The films were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-vis diffuse reflectance, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The XRD patterns indicated that the pure β phase is obtained at 450 °C and was also confirmed by FTIR.
View Article and Find Full Text PDFThe gas-phase treatment with 1,5-diaminonaphthalene (DAN) is proposed as an efficient way of chemical functionalization of fullerene C60 thin films in order to modify their electronic properties; a temperature of 190 degrees C and reaction time of 4 h were found to be optimal reaction conditions. Two amino groups of DAN add on two neighboring C60 cages, thus producing cross-links in the fullerene phase. The resulting oligomeric and/or polymeric products exhibit a lower solubility in toluene as compared to pristine C60 films.
View Article and Find Full Text PDFA microscopic theory of the Raman scattering based on the local bond-polarizability model is presented and applied to the analysis of phonon confinement in porous silicon and porous germanium, as well as nanowire structures. Within the linear response approximation, the Raman shift intensity is calculated by means of the displacement-displacement Green's function and the Born model, including central and non-central interatomic forces. For the porous case, the supercell method is used and ordered pores are produced by removing columns of Si or Ge atoms from their crystalline structures.
View Article and Find Full Text PDF