There is an increasing need for biomarkers of senescent cell burden to facilitate the selection of participants for clinical trials. p16 is encoded by the CDKN2A locus, which produces five variant transcripts in humans, two of which encode homologous p16 proteins: p16, encoded by p16_variant 1, and p16ɣ, encoded by p16_variant 5. While distinct quantitative polymerase chain reaction primers can be designed for p16_variant 5, primers for p16_variant 1 also measure p16_variant 5 (p16_variant 1 + 5).
View Article and Find Full Text PDFMotivated by studies showing an association between beta blocker (BB) use and positive bone outcomes, a pilot randomized control trial (RCT) was performed at the Mayo Clinic which randomized postmenopausal women to placebo, propranolol (40 or 80 mg twice daily), atenolol (50 mg/day), or nebivolol (5 mg/day) to determine changes in bone turnover markers (BTMs) and in bone mineral density (BMD) over 20 weeks. Pharmacogenetic effects and microRNA-mediated mechanisms involving beta adrenergic receptor and related genes have previously been found. We sought to validate these effects and discover new candidates in an ancillary study to the pilot clinical trial.
View Article and Find Full Text PDFBlood coagulation is a vital physiological process involving a complex network of biochemical reactions, which converge to form a blood clot that repairs vascular injury. This process unfolds in three phases: initiation, amplification, and propagation, ultimately leading to thrombin formation. Coagulation begins when tissue factor (TF) is exposed on an injured vessel's wall.
View Article and Find Full Text PDFBackground: In healthy individuals, plasma levels of clotting proteins naturally vary within a range of 50% to 150% of their mean values. We do not know how these variations modify thrombin generation.
Objectives: To assess the impact of protein level variations on simulated thrombin generation in normal and factor (F)VIII-, FIX-, or FXI-deficient blood.
Extracellular vesicles (EVs) are key mediators of cell-cell communication and are involved in transferring specific biomolecular cargo to recipient cells to regulate their physiological functions. A major challenge in the understanding of EV function in vivo is the difficulty ascertaining the origin of the EV particles. The recent development of the "Snorkel-tag," which includes EV-membrane-targeted CD81 fused to a series of extra-vesicular protein tags, can be used to mark EVs originating from a specific source for subsequent isolation and characterization.
View Article and Find Full Text PDFDeformability and sickling of red blood cells (RBCs) from individuals with sickle cell trait (SCT) was evaluated under harsh biophysical conditions that mimic certain vascular beds in vivo. RBC deformability in osmotic-gradient ektacytometry was decreased in HbAS (SCT) compared to HbAA (wild-type) RBCs at supraphysiological osmolalities. RBC deformability was also measured by oxygen-gradient ektacytometry.
View Article and Find Full Text PDFCoagulation factor IX plays a central role in hemostasis through interaction with factor VIIIa to form a factor X-activating complex at the site of injury. The absence of factor IX activity results in the bleeding disorder hemophilia B. This absence of activity can arise either from a lack of circulating factor IX protein or mutations that decrease the activity of factor IX.
View Article and Find Full Text PDFPreclinical evidence demonstrates that senescent cells accumulate with aging and that senolytics delay multiple age-related morbidities, including bone loss. Thus, we conducted a phase 2 randomized controlled trial of intermittent administration of the senolytic combination dasatinib plus quercetin (D + Q) in postmenopausal women (n = 60 participants). The primary endpoint, percentage changes at 20 weeks in the bone resorption marker C-terminal telopeptide of type 1 collagen (CTx), did not differ between groups (median (interquartile range), D + Q -4.
View Article and Find Full Text PDFBlood coagulation is a network of biochemical reactions wherein dozens of proteins act collectively to initiate a rapid clotting response. Coagulation reactions are lipid-surface dependent, and this dependence is thought to help localize coagulation to the site of injury and enhance the association between reactants. Current mathematical models of coagulation either do not consider lipid as a variable or do not agree with experiments where lipid concentrations were varied.
View Article and Find Full Text PDFCells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing.
View Article and Find Full Text PDFBackground: Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination.
View Article and Find Full Text PDFCells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing.
View Article and Find Full Text PDFSenescent cells drive age-related tissue dysfunction via the induction of a chronic senescenceassociated secretory phenotype (SASP). The cyclin-dependent kinase inhibitors p21 and p16 have long served as markers of cellular senescence. However, their individual roles remain incompletely elucidated.
View Article and Find Full Text PDFCachexia is a debilitating skeletal muscle wasting condition for which we currently lack effective treatments. In the context of cancer, certain chemotherapeutics cause DNA damage and cellular senescence. Senescent cells exhibit chronic activation of the transcription factor NF-κB, a known mediator of the proinflammatory senescence-associated secretory phenotype (SASP) and skeletal muscle atrophy.
View Article and Find Full Text PDFPrecise wound classification is essential for surgical site infection risk stratification and appropriate hospital reimbursement. We instituted a multifaceted approach to improve institutional wound class identification including an education and awareness bundle, as well as a formal audit process. Overall, we saw significant improvements in wound class accuracy, interprofessional collaboration and provider compliance.
View Article and Find Full Text PDFEstrogen regulates bone mass in women and men, but the underlying cellular mechanisms of estrogen action on bone remain unclear. Although both estrogen receptor (ER)α and ERβ are expressed in bone cells, ERα is the dominant receptor for skeletal estrogen action. Previous studies using either global or cell-specific ERα deletion provided important insights, but each of these approaches had limitations.
View Article and Find Full Text PDFThe main barrier to HIV cure is a persistent reservoir of latently infected CD4 T cells harboring replication-competent provirus that fuels rebound viremia upon antiretroviral therapy (ART) interruption. A leading approach to target this reservoir involves agents that reactivate latent HIV proviruses followed by direct clearance of cells expressing induced viral antigens by immune effector cells and immunotherapeutics. We previously showed that AZD5582, an antagonist of inhibitor of apoptosis proteins and mimetic of the second mitochondrial-derived activator of caspases (IAPi/SMACm), induces systemic reversal of HIV/SIV latency but with no reduction in size of the viral reservoir.
View Article and Find Full Text PDFBrain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2023
Estrogen signaling is critical for the development and maintenance of healthy bone, and age-related decline in estrogen levels contributes to the development of post-menopausal osteoporosis. Most bones consist of a dense cortical shell and an internal mesh-like network of trabecular bone that respond differently to internal and external cues such as hormonal signaling. To date, no study has assessed the transcriptomic differences that occur specifically in cortical and trabecular bone compartments in response to hormonal changes.
View Article and Find Full Text PDFAging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that -- decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women.
View Article and Find Full Text PDFRes Pract Thromb Haemost
March 2023
Background: Under pathological conditions, tissue factor (TF)-positive extracellular vesicles (EVs) are released into the circulation and activate coagulation. Therefore, it is important to identify methods that accurately quantitate levels of TF in plasma. Enzyme-linked immunosorbent assays (ELISAs) are a fast and simple method to quantitate levels of proteins.
View Article and Find Full Text PDF