Publications by authors named "Monpat Chamnanphon"

Article Synopsis
  • DPYD polymorphisms are linked to toxicities from the chemotherapy drug 5-FU, and this study focused on identifying associations between specific DPYD gene variations and blood-related side effects in Thai colorectal cancer patients.
  • Genetic testing revealed distinct frequencies of DPYD variants, with the homozygous variant DPYD*9A significantly correlating with neutropenia and other hematological toxicities during the first cycle of treatment.
  • The findings suggest that the DPYD*5 variant may act as a predictive marker for lower toxicity levels, highlighting the importance of genetic profiling in managing 5-FU treatment risks.
View Article and Find Full Text PDF

Introduction: plays a major role in the metabolism of various drugs. The most common genetic variants were the and alleles ( and , non-functional variants). In previous studies, we found that genetic polymorphisms in variants influenced the active metabolites of clopidogrel and caused major adverse cardiovascular and cerebrovascular effects.

View Article and Find Full Text PDF

Treatment of anemia in patients with chronic kidney disease (CKD) with recombinant human erythropoietin (rHuEPO) can be disrupted by a severe complication, anti-rHuEPO-induced pure red cell aplasia (PRCA). Specific HLA genotypes may have played a role in the high incidence of PRCA in Thai patients (1.7/1,000 patient years vs.

View Article and Find Full Text PDF

Background: The two common methylenetetrahydrofolate reductase () polymorphisms 677G>A and 1298A>C may have been affecting 5-FU toxicity in cancer patients for decades. Drug efficacy has also been shown by previous studies to be affected. In this study, we investigated the effects of these polymorphisms on 5-FU hematological toxicity and treatment efficacy, to provide enhanced pharmacological treatment for cancer patients.

View Article and Find Full Text PDF

Hyperbilirubinemia is the main mechanism that causes neonatal jaundice, and genetics is one of the risk factors of hyperbilirubinemia. Therefore, this study aims to explore the correlation between two genes, UGT1A1 and SLCO1B1, and hyperbilirubinemia in Thai neonates. One hundred thirty seven neonates were recruited from Division of Clinical Chemistry, Ramathibodi Hospital.

View Article and Find Full Text PDF

Differences in drug responses in individuals are partly due to genetic variations in pharmacogenes, which differ among populations. Here, genome sequencing of 171 unrelated Thai individuals from all regions of Thailand was used to call star alleles of 51 pharmacogenes by Stargazer, determine allele and genotype frequencies, predict phenotype and compare high-impact variant frequencies between Thai and other populations. Three control genes, EGFR, VDR, and RYR1, were used, giving consistent results.

View Article and Find Full Text PDF

Host genetic factors have been shown to play a role in SARs-CoV-2 infection in diverse populations. However, the genetic landscape differs among various ethnicities; therefore, we explored the host genetic factors associated with COVID-19 disease susceptivity and disease severity in a Thai population. We recruited and genotyped 212 unrelated COVID-19 Thai patients and 36 controls using Axiom Human Genotyping SARs-COV-2 array, including 847,384 single nucleotide polymorphisms related to SARs-COV-2 pathogenesis, immune response, and related comorbidity No SNPs passed the genome-wide significance threshold of p value <1 × 10.

View Article and Find Full Text PDF

Purpose: Plasma efavirenz (EFV) concentrations within therapeutic levels are essential to successfully treat patients suffering from human immunodeficiency virus (HIV) type 1. In addition to the drug-metabolizing enzyme CYP2B6, other phase II drug-metabolizing enzymes and transporters may have an important role in the pharmacokinetics of EFV. Thus, the influence of phase II drug-metabolizing enzymes and drug transporters on plasma EFV levels was investigated in Thai HIV patients receiving EFV.

View Article and Find Full Text PDF

Purpose: Donepezil, a drug frequently used to treat dementia, is mainly metabolized by cytochrome P450 2D6 (CYP2D6). This study investigated the relationships between CYP2D6 genotype and activity scores as well as predicted phenotype of plasma donepezil concentrations in 86 Thai dementia participants.

Materials And Methods: CYP2D6 was genotyped using bead-chip technology (Luminex xTAG v.

View Article and Find Full Text PDF

Publicly available pharmacogenomics (PGx) databases enable translation of genotype data into clinically actionable information. As variation within pharmacogenes is population-specific, this study investigated the spectrum of 25 clinically relevant pharmacogenes in the Thai population (n = 291) from whole genome sequencing. The bioinformatics tool Stargazer was used for phenotype prediction, through assignment of alleles and detection of structural variation.

View Article and Find Full Text PDF

Introduction: Genetic polymorphisms of drug transporters influence drug transporter activity and alter pharmacokinetic profiles of the drugs. Organic anion transporting polypeptide 1B1 (OATP1B1) and breast cancer resistance protein (BCRP) are important transporters encoded by solute carrier organic anion transporter family member 1B1 () gene and ATP-binding cassette subfamily G member 2 () gene, respectively. Polymorphisms in these genes are associated with increased plasma statins concentrations, statin-induced myopathy and poor response to allopurinol treatment.

View Article and Find Full Text PDF

Genetic polymorphisms in drug metabolizing enzymes and drug transporters may affect irinotecan toxicity. Although genetic polymorphisms have been shown to influence the irinotecan toxicity, data are limited in Thai population. Thus, the aim of this study was to assess the allele and genotype frequencies and the relationship between CYP3A4/5, DPYD, UGT1A1, ABCB1, and ABCC2 genetic variations and irinotecan-induced toxicity in Thai colorectal cancer patients.

View Article and Find Full Text PDF

Purpose: Pharmacogenes have an influence on biotransformation pathway and clinical outcome of primaquine and chloroquine which are often prescribed to treat infection. Genetic variation may impact enzyme activity and/or transporter function and thereby contribute to relapse. The aim of the study was to assess allele, genotype frequencies and the association between pharmacogenes variation and primaquine response in Thai patients infected with .

View Article and Find Full Text PDF

The highly polymorphic CYP2D6 gene locus leads to a wide range of enzyme activity. Since there are limited data for Thai, the major aim was to investigate CYP2D6 genetic variation in a large Thai population (n = 920). CYP2D6 genotyping was performed using four different platforms.

View Article and Find Full Text PDF

The aim of this study was to investigate the association of drug-metabolizing enzyme and transporter (DMET) polymorphisms with the risperidone-induced prolactin response using an overlapping gene model between serum prolactin level and hyperprolactinemia in autism spectrum disorder (ASD) patients. Eighty-four ASD patients who were receiving risperidone for at least 1 month were recruited and then assigned to either the normal prolactin group or the hyperprolactinemia group based on their serum prolactin level. The genotype profile of 1936 (1931 single nucleotide polymorphisms (SNPs) and 5 copy number variation (CNVs) drug metabolism markers was obtained using the Affymetrix DMET Plus GeneChip microarray platform.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the association of pharmacogenomic factors and clinical outcome in autistic children and adolescents who were treated with risperidone for long periods. Eighty-two autistic subjects diagnosed with DSM-IV and who were treated with risperidone for more than 1 year were recruited. Pharmacogenomics and clinical outcome (CGI-I, aggressive, overactivity and repetitive score) were evaluated.

View Article and Find Full Text PDF

The present study sought to investigate the genetic variants in drug metabolizing enzyme and transporter (DMET) genes associated with steady-state plasma concentrations of risperidone among Thai autism spectrum disorder (ASD) patients. ASD patients taking risperidone for at least 1 month were enrolled for this pharmacogenomic study. Genotyping profile was obtained using Affymetrix DMET Plus array interrogating 1931 variants in 231 genes.

View Article and Find Full Text PDF

Cytochrome P450 enzyme especially plays a major role in biotransformation. The interindividual variations of treatment response and toxicity are influenced by the polymorphisms of this enzyme. This review emphasizes the effect of polymorphisms in risperidone treatment in terms of basic knowledge, pharmacogenetics, effectiveness, adverse events, and clinical practice.

View Article and Find Full Text PDF