Publications by authors named "Monojoy Goswami"

Article Synopsis
  • - The study explores the potential of cellulose nanofibrils (CNFs) as eco-friendly materials, highlighting their lightweight and biodegradable properties, making them suitable for next-generation composites and bioplastics.
  • - Atomistic molecular dynamics simulations identified a NaOH and urea aqueous solution as an effective medium to reduce energy consumption during CNF production by about 21% compared to water, while maintaining similar properties.
  • - The findings suggest a new approach for dispersing deprotonable polymers in manufacturing processes, combining computer simulations with pilot-scale experiments to enhance efficiency in the bioeconomy.
View Article and Find Full Text PDF

Lanthanide vanadate (LnVO) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations.

View Article and Find Full Text PDF

Sodium sulfate decahydrate (SSD) is a low-cost phase-change material (PCM) for thermal energy storage applications that offers substantial melting enthalpy and a suitable temperature range for near-ambient applications. However, SSD's consistent phase separation with decreased melting enthalpy over repeated thermal cycles limits its application as a PCM. Sulfonated polyelectrolytes, such as dextran sulfate sodium (DSS), have shown great effectiveness in preventing phase separation in SSD.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focuses on designing flexible, solvent-free polymer electrolytes for solid-state batteries by understanding how ion transport is influenced by the material's structure and dynamics of the polymers involved.
  • - Researchers found that modifying the polymer/ceramic interface can enhance the ion dissociation and lithium ion (Li) conductivity, crucial for optimizing the electrolyte's performance and stability.
  • - The research utilized polyethylene oxide (PEO) with lithium salts in combination with garnet-type ceramics (Al-LLZO) to investigate the movement of Li ions, employing techniques like dielectric relaxation spectroscopy and X-ray scattering for deeper insights.
View Article and Find Full Text PDF

Sodium sulfate decahydrate (NaSO10HO, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms.

View Article and Find Full Text PDF

The development of multi-stimuli-responsive shape memory polymers has received increasing attention because of its scientific and technological significance. In this work, epoxy elastomers with reversible crosslinks are synthesized by polymerizing an anthracene-functionalized epoxy monomer, a diepoxy comonomer, and a dicarboxylic acid curing agent. The synthesized elastomers exhibit active responses to both light and heat enabled by the incorporated anthracene groups.

View Article and Find Full Text PDF

Polyelectrolytes are used in paper manufacturing to increase flocculation and water drainage and improve mechanical properties. In this study, we examine the interaction between charged cellulosic nanomaterials and polyelectrolyte complex coacervates of weak polyelectrolytes, polyacrylic acid salt, and polyallylamine hydrochloride. We observe that by changing the order of addition of the polyelectrolytes to cellulose nanofibers (CNFs), we can tune the interactions between the materials, which in turn changes the degree of association of the coacervates to the CNFs and the rate at which they aggregate.

View Article and Find Full Text PDF

Photo-initiated thiol-ene click chemistry is used to develop shape memory liquid crystalline networks (LCNs). A biphenyl-based di-vinyl monomer is synthesized and cured with a di-thiol chain extender and a tetra-thiol crosslinker using UV light. The effects of photo-initiator concentration and UV light intensity on the curing behavior and liquid crystalline (LC) properties of the LCNs are investigated.

View Article and Find Full Text PDF

We investigate the effect of high-surface-area self-assembled TiO:CuO nanostructures for CO and relative humidity gravimetric detection using polyethylenimine (PEI), 1-ethyl-3-methylimidazolium (EMIM), and polyacrylamide (PAAm). Introduction of hierarchical TiO:CuO nanostructures on the surface of quartz crystal microbalance sensors is found to significantly improve sensitivity to CO and to HO vapor. The response of EMIM to CO increases fivefold for 100 nm-thick TiO:CuO as compared to gold.

View Article and Find Full Text PDF

An ionomeric, leathery thermoplastic with high mechanical strength is prepared by a new thermal processing method from a soft, melt-processable rubber. Compositions made by incorporation of equal-mass lignin, a renewable oligomeric feedstock, in an acrylonitrile-butadiene rubber often yield weak rubbers with large lignin domains (1-2 µm). The addition of zinc chloride (ZnCl ) in such a composition based on sinapyl alcohol-rich lignin during a solvent-free synthesis induces a strong interfacial crosslinking between lignin and rubber phases.

View Article and Find Full Text PDF

Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization.

View Article and Find Full Text PDF

Structure-property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this article, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic-hydrophilic block copolymers with oppositely charged surfactant moieties.

View Article and Find Full Text PDF

Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential.

View Article and Find Full Text PDF

Understanding how additives interact and segregate within bulk heterojunction (BHJ) thin films is critical for exercising control over structure at multiple length scales and delivering improvements in photovoltaic performance. The morphological evolution of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) blends that are commensurate with the size of a BHJ thin film is examined using petascale coarse-grained molecular dynamics simulations. Comparisons between two-component and three-component systems containing short P3HT chains as additives undergoing thermal annealing demonstrate that the short chains alter the morphology in apparently useful ways: they efficiently migrate to the P3HT/PCBM interface, increasing the P3HT domain size and interfacial area.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. The self-assembly of charged sites and counterions shows structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants.

View Article and Find Full Text PDF

Organic photovoltaics (OPVs) are a topic of extensive research because of their potential application in solar cells. Recent work has led to the development of a coarse-grained model for studying poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends using molecular simulations. Here we provide further validation of the force field and use it to study the thermal annealing process of P3HT:PCBM blends.

View Article and Find Full Text PDF

Frustration in chain packing has been proposed to play an important role in thermodynamic and dynamic properties of polymeric melts and glasses. Based on a quantitative analysis using Voronoi tessellations and large scale molecular dynamics simulations of flexible and semi-flexible polymers, we demonstrate that the rigid polymer chains have higher averaged Voronoi polyhedral volumes and significantly wider distribution of the volume due to frustration in the chain packing. Using these results, we discuss the advantage of the rigid polymers for possible enhancement of transport properties, e.

View Article and Find Full Text PDF

We have synthesized linear ABC triblock terpolymers containing poly(1,3-cyclohexadiene), PCHD, as an end block and characterized their morphologies in the melt. Specifically, we have studied terpolymers containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the other blocks. Systematically varying the ratio of 1,2- /1,4-microstructures of poly(1,3-cyclohexadiene), we have studied the effects of conformational asymmetry among the three blocks on the morphologies using transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and self-consistent field theory (SCFT) performed with PolySwift++.

View Article and Find Full Text PDF

Brownian Dynamics simulations are carried out to understand the effect of temperature and dielectric constant of the medium on microphase separation of charged-neutral diblock copolymer systems. For different dielectric media, we focus on the effect of temperature on the morphology and dynamics of model charged diblock copolymers. In this study we examine in detail a system with a partially charged block copolymer consisting of 75% neutral blocks and 25% of charged blocks with 50% degree of ionization.

View Article and Find Full Text PDF

Anomalous diffusion of polymer chains in a polymer nanocomposite melt is investigated for different polymer-nanoparticle interaction strengths using stochastic molecular dynamics simulations. For spherical nanoparticles dispersed in a polymer matrix the results indicate that the chain motion exhibits three distinct regions of diffusion, the Rouse-like motion, an intermediate subdiffusive regime followed by a normal Fickian diffusion. The motion of the chain end monomers shows a scaling that can be attributed to the formation of strong "networklike" structures, which have been seen in a variety of polymer nanocomposite systems.

View Article and Find Full Text PDF

The structural and dynamical properties of polymer nanocomposites are investigated using stochastic molecular dynamics simulations. For spherical nanoparticles dispersed in a polymer matrix, the results indicate that the polymer-nanoparticle interaction strength and the overall system temperature are primarily responsible for the type of dispersed state (clustering and homogeneous dispersion) achieved. A systematic study probing temperature, polymerization, and polymer-nanoparticle and nanoparticle-nanoparticle interaction strengths has been performed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont9i7q971av476onusf6napv61u2kn2ln): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once