Correction for 'An efficient charge separation and photocurrent generation in the carbon dot-zinc oxide nanoparticle composite' by Monoj Kumar Barman et al., Nanoscale, 2017, 9, 6791-6799.
View Article and Find Full Text PDFThe development of light harvesting systems based on heterostructures for efficient conversion of solar energy to renewable energy is an emerging area of research. Here, we have designed heterostructures by using carbon dots (C-dots) and zinc oxide nanoparticles (ZnO NP) to develop an efficient light harvesting system. Interestingly, the conduction band and the valence band positions of ZnO NP are lower than the LUMO and HOMO positions of C-dots in this type II heterostructure of C dot-ZnO NP, which causes efficient charge separation and photocurrent generation.
View Article and Find Full Text PDFSeveral strategies have been adopted to design an artificial light-harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye-encapsulated BSA-protein-capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C-dots) act as donor and AuNCs capped with BSA protein act as acceptor.
View Article and Find Full Text PDFConjugated multi-chromophore organic nanostructured materials have recently emerged as a new class of functional materials for developing efficient light-harvesting, photosensitization, photocatalysis, and sensor devices because of their unique photophysical and photochemical properties. Here, we demonstrate the formation of various nanostructures (fibers and flakes) related to the molecular arrangement (H-aggregation) of quaterthiophene (QTH) molecules and their influence on the photophysical properties. XRD studies confirm that the fiber structure consists of >95% crystalline material, whereas the flake structure is almost completely amorphous and the microstrain in flake-shaped QTH is significantly higher than that of QTH in solution.
View Article and Find Full Text PDFFluorescent carbon dots (C-dots) have been found to be a new class of nanomaterial for potential applications. Herein, polyethylenimine branched (BPEI) functionalized carbon dots (C-dots) are synthesized by changing the synthesis time using a microwave pyrolysis method. The photoluminescence intensity and average decay time of C-dots are found to be increased with increasing the crystallinity of the C-dots.
View Article and Find Full Text PDF