Potentially toxic elements (PTEs) are of great concern in steel mill wastes. Therefore, in order to use them as potential fertilizers in soil, risk assessments are needed. Three steel mill wastes were tested as possible amendments for soils at seven different doses (0, 0.
View Article and Find Full Text PDFZinc deficiency is widespread in cultivated soils, limiting the grain crop production and the adequate human nutrition. Several wastes from metallurgical activity can be used as Zn source, but these materials generally also have other potentially toxic elements, such as Pb, that can be highly toxic for plants and humans. This study aimed to evaluate the efficiency of five chemical extractors (water, citric acid, DTPA, Mehlich 1, and USEPA 3051A) in better correlating with the bioavailable contents of Zn and Pb in soils treated with steel mill wastes (metallurgic press residue (MPR), filter press mud (FPM), and phosphate mud (PM)).
View Article and Find Full Text PDF