Publications by authors named "Monmayrant A"

This article addresses ambiguities regarding the existence and definition of a phase correction term in phase and amplitude optical field encoding techniques. We present a generalized mixed Fourier-Taylor series expansion that is valid for any phase-wrapping interval. Our theoretical analysis, along with numerical and experimental validations, confirm that maintaining consistency within a given phase-wrapping convention ensures equivalent results and reconciles previously conflicting interpretations.

View Article and Find Full Text PDF

The selective spatial mode excitation of a bi-dimensional grating-coupled micro-cavity called a cavity resonator integrated grating filter (CRIGF) is reported using an incident beam shaped to reproduce the theoretical emission profiles of the device in one and subsequently two dimensions. In both cases, the selective excitation of modes up to order 10 (per direction) is confirmed by responses exhibiting one (respectively two) spectrally narrowband resonance(s) with a good extinction of the other modes, the latter being shown to depend on the parity and order(s) of the involved modes. These results pave the way toward the demonstration of multi-wavelength spatially selective reflectors or fiber-to-waveguide couplers.

View Article and Find Full Text PDF

The image formation in coded aperture spectral imagers is key information for processing the acquired compress data, and the optical system design and calibration of these instruments require great care. We propose an analytical model for CASSI systems that builds upon ray-tracing equations of each optical component. The model takes into account optical distortions, sampling effects, and optical misalignments, and allows accurate modeling and fast calibration.

View Article and Find Full Text PDF

We experimentally demonstrate critical coupling in miniature grating-coupled resonators known as cavity-resonant integrated-grating filters (CRIGFs). Using previously proposed asymmetric grating coupler designs for non-linear CRIGFs, and introducing a dedicated variant of a coupled-modes theory model to estimate physical properties out of the measured reflection and transmission characteristics of these resonators, we demonstrate fine control over the in-and out-coupling rate to the resonator while keeping constant both the internal losses and the resonant wavelength. Furthermore, the critical coupling condition is also observed to coincide with the maximum enhancement of the second harmonic generation signal.

View Article and Find Full Text PDF

We report an hyperspectral imaging microscopy system based on a spectrally-shaped illumination and its use to offer an enhanced in-situ inspection of a technological process that is critical in Vertical-Cavity Surface-Emitting Laser (VCSEL) manufacturing, the lateral III-V-semiconductor oxidation (AlOx). The implemented illumination source exploits a digital micromirror device (DMD) to arbitrarily tailor its emission spectrum. When combined to an imager, this source is shown to provide an additional ability to detect minute surface reflectance contrasts on any VCSEL or AlOx-based photonic structure and, in turn, to offer improved in-situ inspection of the oxide aperture shapes and dimensions down to the best-achievable optical resolution.

View Article and Find Full Text PDF

We report on the design of cavity-resonator integrated grating couplers for second-harmonic generation. The key point is that the base pattern of our grating coupler (GC) is made of two ridges with different widths (bi-atom). Thus, we reach extremely high Q-factors (above 10) with structures whose fabrication is not challenging, since the bi-atom base pattern is close to that of the surrounded distributed Bragg reflectors (DBR).

View Article and Find Full Text PDF

In this paper, dielectric Cavity-Resonant Integrated-Grating Filters (CRIGFs) are numerically optimized to achieve extremely high-quality factors, by optimizing the cavity in/out-coupling rate and by introducing apodizing mode-matching sections to reduce scattering losses. Q-factors ranging between 0.1 and 50 million are obtained and two different domains are distinguished, as a function of the perturbation parameter which controls the cavity in/out-coupling rate.

View Article and Find Full Text PDF

Cavity resonator grating filters (CRIGFs) integrated on lithium niobate on insulator (LNOI) with electrical tuning elements are reported. The resonance wavelength of the filters is in the 780 nm range. Integrated thermo-optical tuning range of 2.

View Article and Find Full Text PDF

Active suspended membranes are an ideal test-bench for experimenting with novel laser geometries and principles. We show that adding thin AlGaAs barrier near the top and bottom Air/GaAs interfaces of the membrane significantly reduces the carriers non-radiative recombinations and decreases the threshold of test photonic crystal test lasers. We review the existing literature on photonic crystal membrane fabrication and propose an overview of the significant defects that can be induced by each fabrication step.

View Article and Find Full Text PDF

We present a fast reconstruction algorithm for hyperspectral images, utilizing a small amount of data without the need for any training. The method is implemented with a dual disperser hyperspectral imager and makes use of spatial-spectral correlations by a so-called separability assumption that assumes that the image is made of regions of homogenous spectra. The reconstruction algorithm is simple and ready-to-use and does not require any prior knowledge of the scene.

View Article and Find Full Text PDF

Mesoscopic Photonic Crystals (MPhCs) are composed of alternating natural or artificial materials with compensating spatial dispersion. In their simplest form, as presented here, MPhCs are composed by the periodic repetition of a MPhC supercell made of a short slab of bulk material and a short slab of Photonic Crystal (PhCs). Therefore, MPhCs present a multiscale periodicity with a subwavelength periodicity within each PhC slab and with a few-wavelength periodicity for its supercell.

View Article and Find Full Text PDF
Article Synopsis
  • This study talks about a new way to capture images that have many colors (called hyperspectral images) using fewer pictures than normal.
  • They developed a special method that guesses the colors by looking at nearby pixels and understanding that similar areas will look alike.
  • The tests showed that, instead of taking a lot of pictures, they only needed 10 to create an accurate image with 110 different colors!
View Article and Find Full Text PDF

We report on an extended cavity quantum cascade laser based on a cavity resonator integrated grating filter (CRIGF) that acts as both cavity end-reflector and spectral selector. Stable, mode-hop free, single-mode emission around 2150 cm is obtained over large injection current ranges (more than 50 mA) with a typical threshold around 290 mA. A digital frequency tuning over more than 65 cm is obtained by changing the periodicity of the CRIGF ending the extended cavity.

View Article and Find Full Text PDF

Self-collimation (SC) and mesoscopic self-collimation (MSC) have been successfully demonstrated along the directions of high symmetry of photonic crystals. Indeed, wide angular acceptances are obtained only in these directions which offer extremely flat isofrequencies. In this article, we numerically demonstrate that mesoscopic self-collimation with large angular acceptance can be achieved along arbitrary directions that are not of high symmetry.

View Article and Find Full Text PDF

We demonstrate numerically and experimentally second-harmonic generation (SHG) in a cavity resonator integrated grating filter (CRIGF, a planar cavity resonator made of Bragg grating reflectors) around 1550 nm. SHG is modeled numerically for several different systems, including a thin plane layer of LiNbO without and with a grating coupler to excite a waveguide mode. We demonstrate that when the waveguide mode is confined to a CRIGF, designed to work with focused incident beams, the SHG power is increased more than 30 times, compared to the case of a single grating coupler used with an almost collimated pump beam.

View Article and Find Full Text PDF

Cavity Resonator Grating Filters (CRIGFs) working in the Mid-Infrared are reported, with narrow-band resonant reflectivity peaks around 2200 cm (4.6 µm). They are fabricated in the GaAs/AlGaAs material system that can potentially cover the whole [1-12] µm spectral range.

View Article and Find Full Text PDF

We demonstrated Graded Cavity Resonator Integrated Grating Filters (G-CRIGFs) that are narrowband spectral reflectors, spectrally tunable over more than 40 nm around 850 nm using a spatial gradient. A simple analytical model is introduced and validated experimentally to determine spectral performance of G-CRIGFs from the spectral properties of a standard Cavity Resonator Integrated Grating Filter (CRIGF).

View Article and Find Full Text PDF

Zero-contrast gratings (ZCG) can be used to implement narrow bandpass transmission filters. However, they suffer from poor angular tolerance, which hinders their use in pixelated applications. Combining ZCG with double-corrugation grating, we increase the resonance width and angular tolerance of the filter by more than 1 order of magnitude.

View Article and Find Full Text PDF

We design a narrowband polarization independent transmission guided mode resonance filter whose center wavelength is tunable with respect to the angle of incidence. The device is composed of two identical structures assembled back to back. Each half structure is a dielectric multilayer stack in which a grating is engraved.

View Article and Find Full Text PDF

Cavity-resonator-integrated guided-mode resonance filters (CRIGFs) are optical filters based on weak coupling by a grating between a free-space propagating optical mode and a guided mode, like guided-mode resonance filters (GMRFs). As compared to GMRFs they offer narrowband reflection with small aperture and high angular acceptance. We report experimental characterization and theoretical modeling of unexpected high-order reflected modes in such devices.

View Article and Find Full Text PDF

We demonstrate experimentally a spectral filter with high Q-factor (≃3238), wide accordability range (1500-1600 nm) with respect to the angle of incidence, and record polarization independence. This work is an experimental validation of the theoretical work reported in [Opt. Lett.

View Article and Find Full Text PDF

Mesoscopic self-collimation (MSC) in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high Q-factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, that results from a beam focusing effect that stabilizes the cavity even for small beam sizes, resembling the focusing behavior of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness.

View Article and Find Full Text PDF

Guided mode resonance filters (GMRFs) are a promising new generation of reflective narrow band filters, that combine structural simplicity with high efficiency. However their intrinsic poor angular tolerance and huge area limit their use in real life applications. Cavity-resonator-integrated guided-mode resonance filters (CRIGFs) are a new class of reflective narrow band filters.

View Article and Find Full Text PDF

We demonstrate a mesoscopic self-collimation effect in photonic crystal superlattices consisting of a periodic set of all-positive index 2D photonic crystal and homogeneous layers. We develop an electromagnetic theory showing that diffraction-free beams are observed when the curvature of the optical dispersion relation is properly compensated for. This approach allows us to combine slow-light regime together with self-collimation in photonic crystal superlattices presenting an extremely low filling ratio in air.

View Article and Find Full Text PDF