Publications by authors named "Monita Muralidharan"

Towards comprehensively investigating the genotype-phenotype relationships governing the human pluripotent stem cell state, we generated an expressed genome-scale CRISPRi Perturbation Cell Atlas in KOLF2.1J human induced pluripotent stem cells (hiPSCs) mapping transcriptional and fitness phenotypes associated with 11,739 targeted genes. Using the transcriptional phenotypes, we created a minimum distortion embedding map of the pluripotent state, demonstrating rich recapitulation of protein complexes, such as strong co-clustering of MRPL, BAF, SAGA, and Ragulator family members.

View Article and Find Full Text PDF

The DNA damage response (DDR) entails reorganization of proteins and protein complexes involved in DNA repair. The coordinated regulation of these proteomic changes maintains genome stability. Traditionally, regulators and mediators of DDR have been investigated individually.

View Article and Find Full Text PDF

The ability to produce folded and functional proteins is a necessity for structural biology and many other biological sciences. This task is particularly challenging for numerous biomedically important targets in human cells, including membrane proteins and large macromolecular assemblies, hampering mechanistic studies and drug development efforts. Here we describe a method combining CRISPR-Cas gene editing and fluorescence-activated cell sorting to rapidly tag and purify endogenous proteins in HEK cells for structural characterization.

View Article and Find Full Text PDF

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S.

View Article and Find Full Text PDF

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest.

View Article and Find Full Text PDF

Glycated hemoglobin (GHb) is the indicator of the long-term glycemic index of an individual. GHb is formed by the irreversible modification of N-terminal α-amino group of β globin chain with glucose via Amadori rearrangement. Cation exchange chromatography exploits the difference in surface charges between GHb and native hemoglobin (HbA ) for their separation and quantification.

View Article and Find Full Text PDF

Glutathionylation is an example of reversible post-translation modification of proteins where free and accessible cysteine residues of proteins undergo thiol-disulfide exchange with oxidized glutathione (GSSG). In general, glutathionylation occurs under the condition of elevated oxidative stress in vivo. In human hemoglobin, Cys93 residue of β globin chain was found to undergo this oxidative modification.

View Article and Find Full Text PDF

Purpose: Long-term glycemic index in patients with diabetes mellitus (DM) is measured by glycated hemoglobin (HbA) besides blood glucose. In DM, the primary amino groups of proteins get glycated via non-enzymatic post-translational modification. This study aims at identifying and characterizing site-specific glycation of erythrocyte proteome across varying glycemic index in patients with DM.

View Article and Find Full Text PDF

Reduction of a disulfide linkage between cysteine residues in proteins, a standard step in the preanalytical preparation of samples in conventional proteomics approach, presents a challenge to characterize S-glutathionylation of proteins. S-glutathionylation of proteins has been reported in medical conditions associated with high oxidative stress. In the present study, we attempted to characterize glutathionylation of CSF proteins in patients with multiple sclerosis which is associated with high oxidative stress.

View Article and Find Full Text PDF

The self-assembly of intrinsically disordered protein tau into paired helical filament forms one of the hallmarks of Alzheimer's disease. However, the facets of innately disordered structure of tau and its conversion to a β-sheet-rich fibril during several tauopathies are poorly understood. Here, we provide a direct insight into the ensemble of highly heterogeneous conformational families of tau at physiological pH, by nano-electrospray mass spectrometry coupled with ion mobility.

View Article and Find Full Text PDF

Intrinsically disordered protein tau plays a central role in maintaining neuronal network by stabilizing microtubules in axon. Tau reportedly possesses random coil architecture, which is largely inert to alteration in solution conditions. However, the presence of transient compact conformers and residual structure has been evident from previous reports.

View Article and Find Full Text PDF

Electrostatic attraction between α and β globin chains holds the subunits together in a tetrameric human hemoglobin molecule (α β ). Compared to normal globin chains, the affinity of a mutant chain to its partner globin might be different in genetic variants of hemoglobin. This leads to an unequal abundance of normal and variant hemoglobin in heterozygous samples, even though the rates of synthesis of both the normal and variant chains are the same.

View Article and Find Full Text PDF

In general, the reactivity of cysteine residues of proteins is measured by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) kinetics using spectrophotometry. Proteins with several cysteine residues may exhibit varying DTNB kinetics but residue level information can only be obtained with the prior knowledge of their three-dimensional structure. However, this method is limited in its application to the proteins containing chromophores having overlapping absorption profile with 2-nitro-5-thiobenzoic acid, such as hemoglobin (Hb).

View Article and Find Full Text PDF

Cigarette smoke (CS) is an important source of morbidity and early mortality worldwide. Besides causing various life-threatening diseases, CS is also known to cause hypoxia. Chronic hypoxia would induce early aging and premature death.

View Article and Find Full Text PDF

To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo.

View Article and Find Full Text PDF

Glycated hemoglobin (HbA1c) is a 'gold standard' biomarker for assessing the glycemic index of an individual. HbA1c is formed due to nonenzymatic glycosylation at N-terminal valine residue of the β-globin chain. Cation exchange based high performance liquid chromatography (CE-HPLC) is mostly used to quantify HbA1c in blood sample.

View Article and Find Full Text PDF

Glutathionyl hemoglobin, a post-translationally modified form of hemoglobin, has been reported to serve as a marker of oxidative stress in several clinical conditions. This modification causes perturbations in the hemoglobin functionality by increasing oxygen affinity and reducing cooperativity. Moreover, glutathionylation of sickle hemoglobin was reported to lead to a significant reduction in the propensity of sickling of erythrocytes.

View Article and Find Full Text PDF

Glutathionyl hemoglobin, an example of post-translationally modified hemoglobin, has been studied as a marker of oxidative stress in various diseased conditions. Compared to normal hemoglobin, glutathionyl hemoglobin has been found to have increased oxygen affinity and reduced cooperativity. However, detailed information concerning the structural perturbation of hemoglobin associated with glutathionylation is lacking.

View Article and Find Full Text PDF