Serine is critical for supporting cancer metabolism, and depriving malignant cells of this nonessential amino acid exerts antineoplastic effects, in large part, through disrupting metabolic pathways. Given the intricate relationship between cancer metabolism and the immune system, the metabolic defects imposed by serine deprivation might impact tumor-targeting immunity. In this study, we demonstrated that restricting endogenous and exogenous sources of serine in colorectal cancer cells results in mitochondrial dysfunction, leading to mitochondrial DNA (mtDNA) accumulation in the cytosol and consequent cGAS-STING1-driven type I IFN secretion.
View Article and Find Full Text PDFTumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation.
View Article and Find Full Text PDFMutant p53 (mtp53) proteins can exert cancer-promoting gain-of-function activities. We report a mechanism by which mtp53 suppresses both cell-autonomous and non-cell-autonomous signaling to promote cancer cell survival and evasion of tumor immune surveillance. Mtp53 interferes with the function of the cytoplasmic DNA sensing machinery, cGAS-STING-TBK1-IRF3, that activates the innate immune response.
View Article and Find Full Text PDFThe neem (Azadirachta indica A. Juss) is a tropical evergreen tree (Fam. Meliacae; Subfam.
View Article and Find Full Text PDFSolid tumors characteristically reflect a metabolic switching from glucose oxidation to glycolysis that plays a fundamental role in angiogenesis and metastasis to facilitate aggressive tumor outcomes. Hyperpolarized mitochondrial membrane potential is a manifestation of malignant cells that compromise the intrinsic pathways of apoptosis and confer a suitable niche to promote the cancer associated hallmark traits. We have previously reported that co-drug Bet-CA selectively targets cancer cells by inducing metabolic catastrophe without a manifest in toxicity.
View Article and Find Full Text PDFHerein, we synthesize and elucidate the potential of a novel 'dual hit' molecule, LDCA, to constitutively block lactate dehydrogenase isoform-A (LDH-A) to selectively subvert apoptosis and rigorously attenuate breast tumor progression in a mouse model, comprehensively delineating the therapeutic prospectus of LDCA in the field of cancer metabolics.
View Article and Find Full Text PDFSelective targeting of cancer cells employing multiple combinations as co-drug holds promise for new generation therapeutics. Betulinic acid (BA), a plant secondary metabolite kills cancer cells and Dichloroacetate (DCA) is capable of reversing the Warburg phenotype by inhibiting pyruvate dehydrogenase kinase (PDK). Here, we report synthesis, characterization and tumoricidal potential of a co-drug Bet-CA, where a DCA molecule has been appended on C-3 hydroxyl group of BA to generate an ester derivative for increased solubility and subsequent cleavage by internal esterase(s) to release one unit each of BA and DCA.
View Article and Find Full Text PDF