Publications by authors named "Monique Windley"

When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions.

View Article and Find Full Text PDF

The Comprehensive in vitro Proarrhythmic Assay (CiPA) has promoted use of in silico models of drug effects on cardiac repolarization to improve proarrhythmic risk prediction. These models contain a pharmacodynamic component describing drug binding to hERG channels that required in vitro data for kinetics of block, in addition to potency, to constrain them. To date, development and validation has been undertaken using data from manual patch-clamp.

View Article and Find Full Text PDF

Drug-induced long QT syndrome (diLQTS) is the phenomenon by which the administration of drugs causes prolongation of cardiac repolarisation and leads to an increased risk of the ventricular tachycardia known as torsades de pointes (TdP). In most cases of diLQTS, the primary molecular target is the human ether-à-go-go-related gene protein (hERG) potassium channel, which carries the rapid delayed rectifier current (I) in the heart. However, the proarrhythmic risk associated with drugs that block hERG can be modified in patients by a range of environmental- and disease-related factors, such as febrile temperatures, alterations in pH, dyselectrolytaemias such as hypokalaemia and hypomagnesemia and coadministration with other drugs.

View Article and Find Full Text PDF

Automated patch-clamp platforms are widely used and vital tools in both academia and industry to enable high-throughput studies such as drug screening. A leak current to ground occurs whenever the seal between a pipette and cell (or internal solution and cell in high-throughput machines) is not perfectly insulated from the bath (extracellular) solution. Over 1 GΩ seal resistance between pipette and bath solutions is commonly used as a quality standard for manual patch work.

View Article and Find Full Text PDF

Background And Purpose: Hydroxychloroquine, chloroquine and azithromycin are three drugs that were proposed to treat coronavirus disease 2019 (COVID-19). While concern already existed around their proarrhythmic potential, there are little data regarding how altered physiological states encountered in patients such as febrile state, electrolyte imbalances or acidosis might change their risk profiles.

Experimental Approach: Potency of human ether-à-go-go related gene (hERG) block was measured using high-throughput electrophysiology in the presence of variable environmental factors.

View Article and Find Full Text PDF

is one of the 59 medically actionable genes recommended by the American College of Medical Genetics for reporting of incidental findings from clinical genomic sequencing. However, half of the reported variants in the ClinVar database are classified as variants of uncertain significance. In the absence of strong clinical phenotypes, there is a need for functional phenotyping to help decipher the significance of variants identified incidentally.

View Article and Find Full Text PDF

The canonical mechanistic model explaining potassium channel gating is of a conformational change that alternately dilates and constricts a collar-like intracellular entrance to the pore. It is based on the premise that K ions maintain a complete hydration shell while passing between the transmembrane cavity and cytosol, which must be accommodated. To put the canonical model to the test, we locked the conformation of a Kir K channel to prevent widening of the narrow collar.

View Article and Find Full Text PDF

Current guidelines around preclinical screening for drug-induced arrhythmias require the measurement of the potency of block of voltage-gated potassium channel subtype 11.1 (K11.1) as a surrogate for risk.

View Article and Find Full Text PDF

The hERG (human ether-a-go-go-related gene) encoded potassium ion (K) channel plays a major role in cardiac repolarization. Drug-induced blockade of hERG has been a major cause of potentially lethal ventricular tachycardia termed Torsades de Pointes (TdPs). Therefore, we presented a pharmacoinformatics strategy using combined ligand and structure based models for the prediction of hERG inhibition potential (IC) of new chemical entities (NCEs) during early stages of drug design and development.

View Article and Find Full Text PDF

Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide ω-HXTX-Hv1a (Hv1a).

View Article and Find Full Text PDF

Current mandated preclinical tests for drug-induced proarrhythmia are very sensitive, but not sufficiently specific. This has led to concern that there is a high attrition rate of potentially safe drugs that could have been beneficial to patients. The comprehensive in vitro proarrhythmia initiative has proposed new metrics based around in silico risk predictions, which are informed, among other things, by measures of human ether-à-go-go-related gene channel (hERG) block kinetics.

View Article and Find Full Text PDF

Acquired long QT syndrome, mostly as a result of drug block of the Kv11. 1 potassium channel in the heart, is characterized by delayed cardiac myocyte repolarization, prolongation of the T interval on the ECG, syncope and sudden cardiac death due to the polymorphic ventricular arrhythmia Torsade de Pointes (TdP). In recent years, efforts are underway through the Comprehensive proarrhythmic assay (CiPA) initiative, to develop better tests for this drug induced arrhythmia based in part on simulations of pharmacological disruption of repolarization.

View Article and Find Full Text PDF

κ-Hexatoxins (κ-HXTXs) are a family of excitotoxic insect-selective neurotoxins from Australian funnel-web spiders that are lethal to a wide range of insects, but display no toxicity towards vertebrates. The prototypic κ-HXTX-Hv1c selectively blocks native and expressed cockroach large-conductance calcium-activated potassium (BK or K1.1) channels, but not their mammalian orthologs.

View Article and Find Full Text PDF

Introduction: The Comprehensive in vitro Proarrhythmic Assay (CiPA) aims to update current cardiac safety testing to better evaluate arrhythmic risk. A central theme of CiPA is the use of in silico approaches to risk prediction incorporating models of drug binding to hERG. To parameterize these models, accurate in vitro measurement of potency and kinetics of block is required.

View Article and Find Full Text PDF

Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (Kv11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias.

View Article and Find Full Text PDF

The Kv11.1 or hERG potassium channel is responsible for one of the major repolarising currents (IKr) in cardiac myocytes. Drug binding to hERG can result in reduction in IKr, action potential prolongation, acquired long QT syndrome and fatal cardiac arrhythmias.

View Article and Find Full Text PDF

Vicinal disulfide bridges, in which a disulfide bond is formed between adjacent cysteine residues, constitute an unusual but expanding class of potential allosteric disulfides. Although vicinal disulfide rings (VDRs) are relatively uncommon, they have proven to be functionally critical in almost all proteins in which they have been discovered. However, it has proved difficult to test whether these sterically constrained disulfides participate in functionally important redox transformations.

View Article and Find Full Text PDF

Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world's annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides.

View Article and Find Full Text PDF

Spider venoms are actively being investigated as sources of novel insecticidal agents for biopesticide engineering. After screening 37 theraphosid spider venoms, a family of three new "short-loop" inhibitory cystine knot insecticidal toxins (κ-TRTX-Ec2a, κ-TRTX-Ec2b, and κ-TRTX-Ec2c) were isolated and characterized from the venom of the African tarantula Eucratoscelus constrictus. Whole-cell patch-clamp recordings from cockroach dorsal unpaired median neurons revealed that, despite significant sequence homology with other theraphosid toxins, these 29-residue peptides lacked activity on insect voltage-activated sodium and calcium channels.

View Article and Find Full Text PDF

The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare vicinal disulfide bridge. Although lethal to a wide range of invertebrates, their molecular target has remained enigmatic for almost a decade. We demonstrate here that these toxins are selective, high-affinity blockers of invertebrate Ca(2+)-activated K(+) (K(Ca)) channels.

View Article and Find Full Text PDF