Desmin ( DES) mutations have been recognized as a cause of desmin-related myopathy (OMIM 601419), or desminopathy, a disease characterized by progressive limb muscle weakness and accumulation of desmin-reactive granular aggregates in the myofibers. We have studied three families with skeletal or cardioskeletal myopathy caused by small in-frame deletions in the desmin gene. The newly identified in-frame deletions E359_S361del and N366del alter the heptad periodicity within a critical 2B coiled-coil segment.
View Article and Find Full Text PDFMutations in desmin gene have been identified in patients with cardiac and skeletal myopathy characterized by intracytoplasmic accumulation of desmin-reactive deposits and electron-dense granular aggregates. We characterized two new desminopathy families with unusual features of adult-onset, slowly progressive, diffuse skeletal myopathy and respiratory insufficiency. Progressive reduction of respiratory muscle strength became clinically detectable between the 3rd and the 8th years of illness and led to recurrent chest infections and death in one of the patients.
View Article and Find Full Text PDFDesmin myopathy is a familial or sporadic disorder characterized by the presence of desmin mutations that cause skeletal muscle weakness associated with cardiac conduction block, arrhythmia and heart failure. Distinctive histopathologic features include intracytoplasmic accumulation of desmin-reactive deposits and electron-dense granular aggregates in skeletal and cardiac muscle cells. We describe two families with features of adult-onset slowly progressive skeletal myopathy without cardiomyopathy.
View Article and Find Full Text PDFUptake of iron from various siderophores by a deltafet3deltafet4 strain of Saccharomyces cerevisiae was investigated. The catecholate enterobactin and the hydroxamate coprogen were taken up by the cells by passive diffusion, whereas the hydroxamates ferrioxamine B (FOB) and ferricrocin (FC) were taken up via a high-affinity energy-dependent mechanism. The kinetics of FOB and FC uptake showed reciprocal competitive inhibition.
View Article and Find Full Text PDF