Publications by authors named "Monique P Singulani"

The role of lithium as a possible therapeutic strategy for neurodegenerative diseases has generated scientific interest. We systematically reviewed and meta-analyzed pre-clinical and clinical studies that evidenced the neuroprotective effects of lithium in Alzheimer's (AD) and Parkinson's disease (PD). We followed the PRISMA guidelines and performed the systematic literature search using PubMed, EMBASE, Web of Science, and Cochrane Library.

View Article and Find Full Text PDF

6-hydroxydopamine (6-OHDA) is a common neurotoxin used to induce Parkinson's disease (PD) in mice, exerting neurotoxic effects through the production of reactive oxygen species and microglial activation. However, the role of microglia in PD is still not clear, with contradictory reports showing neuroprotection or exacerbation of neuronal death. Microglial depletion aggravates motor coordination impairments and reduces tyrosine hydroxylase positive neurons in the substantia nigra pars compacta.

View Article and Find Full Text PDF

Background: Lithium has neuroprotective effects in animal models of stroke, but benefits in humans remain uncertain. This article aims to systematically review the available evidence of the neuroprotective and regenerative effects of lithium in animal models of stroke, as well as in observational and trial stroke studies in humans.

Methods: This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death.

View Article and Find Full Text PDF

Learning complex motor skills is an essential process in our daily lives. Moreover, it is an important aspect for the development of therapeutic strategies that refer to rehabilitation processes since motor skills previously acquired can be transferred to similar tasks (motor skill transfer) or recovered without further practice after longer delays (motor skill retention). Different acrobatic exercise training (AE) protocols induce plastic changes in areas involved in motor control and improvement in motor performance.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by the accumulation of abnormal tau proteins within neurons and amyloid plaques in the brain parenchyma, which leads to progressive loss of neurons in the brain. While the detailed mechanism of the pathogenesis of AD is still unknown, evidence suggests that mitochondrial dysfunction likely plays a fundamental role in the pathogenesis of this disease. Due to the relevance of mitochondrial alterations in AD, recent works have suggested the therapeutic potential of mitochondrial-targeted lithium.

View Article and Find Full Text PDF

It is well known that patients with Alzheimer's disease (AD) have imbalances in blood thiamine concentrations and lower activity of thiamine-dependent enzymes. Benfotiamine, a more bioavailable thiamine analog, has been proposed as an alternative to counteract these changes related to thiamine metabolism. Thus, our study aimed to analyze the effects of benfotiamine supplementation on brain thiamine absorption, as well as on parameters related to neuronal energy metabolism and disease progression in an experimental model of sporadic AD induced by intracerebroventricular injection of streptozotocin (STZ) in rats.

View Article and Find Full Text PDF

Parkinson's disease (PD) is typicaly caractherized by loss of dopaminergic neurons, as well as the presence of mitochondrial impairments. Although physical exercise is known to promote many beneficial effects in healthy subjects, such as enhancing mitocondrial biogenesis and function, it is not clear if these effects are evident after exercise in individuals with PD. The aim of this study was to investigate the effects of two different protocol durations on motor behavior (aphomorphine and gait tests), mitochondrial biogenesis signaling (PGC-1α, NRF-1 and TFAM), structure (oxidative phosphorylation system protein levels) and respiratory chain activity (complex I) in a unilateral PD rat model.

View Article and Find Full Text PDF

Impairment of mitochondrial biogenesis and mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD). However, the extent to which the impairment of mitochondrial biogenesis influences mitochondrial dysfunction at the onset and during progression of AD is still unclear. Our study demonstrated that the protein expression pattern of the transcription factor pCREB/CREB, together with the protein expression of PGC-1α, NRF1 and TFAM are all significantly reduced in early ages of 3xTg-AD mice.

View Article and Find Full Text PDF

Recently, it has been suggested that oxytocin (OT) might play a role in the control of bone remodeling and in bone health of young and adult females. The purpose of this study was to evaluate the effect of osteogenic medium (OM) plus OT (OM + OT; 100 nmol/L) on osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) from cyclic adult (12 months old) and acyclic aging (24 months old) female Wistar rats. After 14 days, OM + OT increased the oxytocin and oxytocin receptor in the BMMSCs from animals of both age groups relative to OM controls.

View Article and Find Full Text PDF

The effects of strength training (ST) on the mechanical bone strength and osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) from adult, aged and exercised aged rats were determined. The exercised aged animals displayed higher values of areal bone mineral density, compression test, alkaline phosphatase activity (ALP) and biological mineralization, while oil red O staining for adipocytes was lower. ST increased gene expression of runt-related transcription factor 2 (Runx2), osterix (Osx) as well as bone matrix protein expression, and reduced expression of peroxisome proliferator-activated receptor gamma (Pparγ).

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days.

View Article and Find Full Text PDF