Nitidulid beetles (Coleoptera: Nitidulidae), the overland vectors of the Bretziella fagacearum fungus that causes oak wilt, were monitored in infection centers in Quercus rubra stands in northern Michigan, USA using baited, wind-oriented traps for 2 years. First nitidulid captures, accounting for <1.5% of total annual captures, occurred in late April in both years (<50 cumulative degree days [DDs]; base 10°C).
View Article and Find Full Text PDFAn increasing number of researchers are looking to understand the factors affecting microbial dispersion but are often limited by the costs of commercially available air samplers. Some have reduced these costs by designing self-made versions; however, there are no published sampler designs, and there is limited information provided on the actual construction process. Lack of appropriate reference material limits the use of these self-made samplers by many researchers.
View Article and Find Full Text PDFAlthough improved knowledge on the movement of airborne plant pathogens is likely to benefit plant health management, generating this knowledge is often far more complicated than anticipated. This complexity is driven by the dynamic nature of environmental variables, diversity among pathosystems that are targeted, and the unique needs of each research group. When using a rotating-arm impaction sampler, particle collection is dependent on the pathogen, environment, research objectives, and limitations (monetary, environmental, or labor).
View Article and Find Full Text PDFVascular wilts are important diseases caused by plant pathogenic fungi that result in the rapid death of their plant hosts. This is due to a systemic defense mechanism whereby the plant induces the compartmentalization of the infected vascular system in order to reduce the propagation of the fungus. The ascomycete class Sordariomycetes contains several species that cause vascular wilts in diverse plant hosts, and they can be classified into four taxonomic orders.
View Article and Find Full Text PDFThe North American beech leaf disease (BLD) nematode, Litylenchus crenatae mccannii Handoo, Li, Kantor, Bauchan, McCann, Gabriel, Yu, Reed, Koch, Martin and Burke, 2020, is recognized as a newly emergent nematode species that causes BLD in beech trees (Fagus spp.) in North America (Carta et al. 2020; Kantor et al.
View Article and Find Full Text PDFManagement of cucurbit downy mildew (CDM) caused by , relies on an intensive fungicide program. In Michigan, CDM occurs annually due to an influx of airborne sporangia and timely alerts of airborne inoculum can assist growers in assessing the need to initiate fungicide sprays. This research aimed to improve the specific detection of airborne sporangia by adapting quantitative real-time polymerase chain reaction (qPCR) assays to distinguish among clades I and II and in spore trap samples from commercial production sites and research plots.
View Article and Find Full Text PDFTechnological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.
View Article and Find Full Text PDF(Butler) is a highly destructive plant pathogen that infects tropical hosts worldwide, many of which are economically important crops. Despite the broad host range and wide distribution, the pathogen has displayed a considerable amount of variation in morphological characters, including virulence. However, the genetic variability at a global level, which is critical to understand the center of origin and the potential pathway(s) of introduction, was unclear.
View Article and Find Full Text PDFCucurbit downy mildew (CDM), caused by the oomycete pathogen , is a devastating foliar disease on cucumber resulting in reduced yields. In 2004, the pathogen re-emerged in the United States, infecting historically resistant cucumber cultivars and requiring the adoption of an intensive fungicide program. The pathogen cannot overwinter in Michigan fields but because of an influx of airborne sporangia CDM occurs annually.
View Article and Find Full Text PDFSince 2006 there has been a decline in Colorado blue spruce (CBS; ) planted as landscape trees and for Christmas tree production throughout the Lower Peninsula of Michigan. This decline is characterized by a slow loss of needles in the lower portion of the tree starting at branch tips, followed by entire branch dieback, which progresses upward over several years. This dieback has been linked to shallow branch cankers visible in the phloem when the bark layer is removed.
View Article and Find Full Text PDFMichigan's hop acreage ranks fourth nationally, but the state's growers contend with unique disease challenges resulting from frequent rainfall and high humidity. In August 2018, a Michigan hop grower reported necrosis and blighting of foliage and shattering of cones resulting in yield loss. Irregular-shaped lesions developed on leaves, surrounded by a halo of chlorotic tissue, and cone bracts became brown.
View Article and Find Full Text PDFPlant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection.
View Article and Find Full Text PDFSome of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola.
View Article and Find Full Text PDFNeofusicoccum is a recently described genus of common endophytes and pathogens of woody hosts, previously placed in the genus Botryosphaeria. Many morphological characteristics routinely used to describe species overlap in Neofusicoccum, and prior to the use of molecular phylogenetics, isolates from different hosts and locations were often misidentified. Two cryptic species Neofusicoccum ribis and Neofusicoccum parvum were initially described from different continents and recently another four species within this complex were described using fixed nucleotide polymorphisms for differentiation.
View Article and Find Full Text PDF