Publications by authors named "Monique F Stins"

Cerebral malaria in young African children is associated with high mortality, and persisting neurological deficits often remain in survivors. Sequestered -infected red blood cells lead to cerebrovascular inflammation and subsequent neuroinflammation. Brain inflammation can play a role in the pathogenesis of neurologic sequelae.

View Article and Find Full Text PDF

Neurological infections, such as Cerebral malaria (CM) and meningitis are associated with high mortality and in survivors, particularly young children, persistent neurologic deficits often remain. As brain inflammation plays a role in the development of these neurological sequelae, multiplex assays were used to assess a select set of immune mediators in both plasma and cerebrospinal fluid (CSF) from Zambian children with neurological infections. Both CM and meningitis patients showed high levels of markers for vascular inflammation, such as soluble ICAM-1 and angiopoietins.

View Article and Find Full Text PDF

Postmortem neuropathology shows clear regional differences in many brain diseases. For example, brains from cerebral malaria (CM) patients show more hemorrhagic punctae in the brain's white matter (WM) than grey matter (GM). The underlying reason for these differential pathologies is unknown.

View Article and Find Full Text PDF

Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the lumen of the brain's vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-investigated.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) helps maintain a tightly regulated microenvironment for optimal central nervous system (CNS) homeostasis and facilitates communications with the peripheral circulation. The brain endothelial cells, lining the brain's vasculature, maintain close interactions with surrounding brain cells, e.g.

View Article and Find Full Text PDF

Clinical and model studies indicate that low nitric oxide (NO) bioavailability due in part to profound hypoargininemia contributes to cerebral malaria (CM) pathogenesis. Protection against CM pathogenesis may be achieved by altering the diet before infection with Plasmodium falciparum infection (nutraceutical) or by administering adjunctive therapy that decreases CM mortality (adjunctive therapy). This hypothesis was tested by administering citrulline or arginine in experimental CM (eCM).

View Article and Find Full Text PDF

The vertebrate blood-brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units.

View Article and Find Full Text PDF

Plasmodium falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand P. falciparum erythrocyte membrane protein 1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria.

View Article and Find Full Text PDF

Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, but specific interactions involved in cerebral homing of infected erythrocytes (IEs) are poorly understood. In this study, P. falciparum-IEs were characterized for binding to primary human brain microvascular endothelial cells (HBMECs).

View Article and Find Full Text PDF

The vascular endothelium of the blood-brain barrier (BBB) is regarded as a part of the neurovascular unit (NVU). This emerging NVU concept emphasizes the need for homeostatic signalling among the neuronal, glial and vascular endothelial cellular compartments in maintaining normal brain function. Conversely, dysfunction in any component of the NVU affects another, thus contributing to disease.

View Article and Find Full Text PDF

Cerebral malaria is a severe multifactorial condition associated with the interaction of high numbers of infected erythrocytes to human brain endothelium without invasion into the brain. The result is coma and seizures with death in more than 20% of cases. Because the brain endothelium is at the interface of these processes, we investigated the global gene responses of human brain endothelium after the interaction with Plasmodium falciparum-infected erythrocytes with either high- or low-binding phenotypes.

View Article and Find Full Text PDF

Background And Purpose: We recently reported that delayed lithium therapy can improve stroke recovery in rats by augmenting neurovascular remodeling. We tested the hypothesis that lithium can promote the expression of growth factors in brain endothelial cells and astrocytes.

Methods: Human brain microvascular endothelial cells and primary rat cortical astrocytes were exposed to lithium chloride in serum-free medium.

View Article and Find Full Text PDF

Background And Purpose: The concept of the neurovascular unit suggests that effects on brain vasculature must be considered if neuroprotection is to be achieved in stroke. We previously reported that 12/15-lipoxygenase (12/15-LOX) is upregulated in the peri-infarct area after middle cerebral artery occlusion in mice, and 12/15-LOX contributes to brain damage after ischemia-reperfusion. The current study was designed to investigate 12/15-LOX involvement in vascular injury in the ischemic brain.

View Article and Find Full Text PDF

The neurovascular unit is an emerging concept that emphasizes homeostatic interactions between endothelium and cerebral parenchyma. Here, we show that cerebral endothelium are not just inert tubes for delivering blood, but they also secrete trophic factors that can be directly neuroprotective. Conditioned media from cerebral endothelial cells broadly protects neurons against oxygen-glucose deprivation, oxidative damage, endoplasmic reticulum stress, hypoxia, and amyloid neurotoxicity.

View Article and Find Full Text PDF

Background: Central to the pathologic progression of human cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected red blood cells (Pf-IRBCs) to the blood-brain barrier (BBB) endothelium. The molecular interactions between Pf-IRBCs and the BBB endothelium and their implications for barrier function are unclear.

Methods: The effects of Pf-IRBCs on the integrity of the BBB were assessed by electrical cell substrate sensing and by transendothelial electrical resistance measurements in an in vitro human BBB model.

View Article and Find Full Text PDF

Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-IRBC) in postcapillary brain endothelium is a hallmark of cerebral malaria (CM) pathogenesis. There is a correlation between adherent Pf-IRBC and increased expression of intercellular cell adhesion molecule 1 (ICAM-1), which is also a receptor for Pf-IRBC on human brain microvascular endothelial cells (HBMEC). The underlying mechanism for the increased ICAM-1 expression has not been clearly defined.

View Article and Find Full Text PDF

Background: Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model.

View Article and Find Full Text PDF

Natural killer (NK) cells and dendritic cells (DCs) are, respectively, central components of innate and adaptive immune responses. We describe here a third DC lineage, termed interferon-producing killer DCs (IKDCs), distinct from conventional DCs and plasmacytoid DCs and with the molecular expression profile of both NK cells and DCs. They produce substantial amounts of type I interferons (IFN) and interleukin (IL)-12 or IFN-gamma, depending on activation stimuli.

View Article and Find Full Text PDF

Chemokines and chemokine receptors play a key role in the transmigration of leucocytes across the blood-brain barrier (BBB). CCR2 is the major receptor for CCL2, a potent monocyte and T cell chemoattractant. CCR2 and CCL2 have been consistently associated with a pathogenic role in experimental autoimmune encephalomyelitis, using knockout and transgenic mice, neutralizing antibodies, peptide antagonists and DNA vaccination.

View Article and Find Full Text PDF

Central nervous system (CNS) dysfunction is commonly observed in children with human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism(s) whereby HIV-1 causes encephalopathy remains incompletely understood. Human brain microvascular endothelial cells (HBMECs), which constitute the blood-brain barrier, are likely to contribute to HIV-1 encephalopathy, but it is unclear whether HIV-1 receptors (CD4, chemokine receptors) are present on HBMECs. In the present study, the presence of CD4 in six different children was demonstrated.

View Article and Find Full Text PDF

Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B.

View Article and Find Full Text PDF

The neurological manifestations of sleeping sickness in man are attributed to the penetration of the blood-brain barrier (BBB) and invasion of the central nervous system by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, how African trypanosomes cross the BBB remains an unresolved issue. We have examined the traversal of African trypanosomes across the human BBB using an in vitro BBB model system constructed of human brain microvascular endothelial cells (BMECs) grown on Costar Transwell inserts.

View Article and Find Full Text PDF

Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis.

View Article and Find Full Text PDF

Chemokines and their receptors may be implicated in leukocyte ingress into brain during inflammation observed during the course of multiple sclerosis (MS). To address receptor modulation on CD4+ memory T lymphocytes during diapedesis, we used an in vitro model of the blood-brain barrier (BBB). We found that only memory (CD45RO+) cells transmigrated and type 3 CXC chemokine receptor (CXCR3) was enriched on transmigrated cells.

View Article and Find Full Text PDF

Central nervous system dysfunction is commonly observed in children with HIV-1 infection, but the mechanisms whereby HIV-1 causes encephalopathy are not completely understood. We have previously shown that human brain microvascular endothelial cells (HBMEC) from children are responsive to gp120 derived from X4 HIV-1 by increasing expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule-1. However, the mechanisms involved in gp120-mediated up-regulation of cell adhesion molecule expression is unclear.

View Article and Find Full Text PDF