The experimental methods employed during metagenomic sequencing analyses of microbiome samples significantly impact the resulting data and typically vary substantially between laboratories. In this study, a full factorial experimental design was used to compare the effects of a select set of methodological choices (sample, operator, lot, extraction kit, variable region, and reference database) on the analysis of biologically diverse stool samples. For each parameter investigated, a main effect was calculated that allowed direct comparison both between methodological choices (bias effects) and between samples (real biological differences).
View Article and Find Full Text PDFSurface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources.
View Article and Find Full Text PDFFecal pollution remains a significant challenge for recreational water quality management worldwide. In response, there is a growing interest in the use of real-time quantitative PCR (qPCR) methods to achieve same-day notification of recreational water quality and associated public health risk as well as to characterize fecal pollution sources for targeted mitigation. However, successful widespread implementation of these technologies requires the development of and access to a high-quality standard control material.
View Article and Find Full Text PDF