Inflammation has a central role in the pathogenesis of atherosclerosis at various stages of the disease. Therefore it appears of great interest to develop novel and innovative drugs targeting inflammatory proteins for the treatment of atherosclerosis. The PI3K (phosphoinositide 3-kinase) family, which catalyses the phosphorylation of the 3-OH position of phosphoinositides and generates phospholipids, controls a wide variety of intracellular signalling pathways.
View Article and Find Full Text PDFBackground: The role of inflammation at all stages of the atherosclerotic process has become an active area of investigation, and there is a notable quest for novel and innovative drugs for the treatment of atherosclerosis. The lipid kinase phosphoinositide 3-kinase-gamma (PI3Kgamma) is thought to be a key player in various inflammatory, autoimmune, and allergic processes. These properties and the expression of PI3Kgamma in the cardiovascular system suggest that PI3Kgamma plays a role in atherosclerosis.
View Article and Find Full Text PDFRecent studies highlight the existence of an autonomous nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PCs as a source of second messengers and, particularly, nuclear phospholipase D (PLD) identification in membrane-free nuclei isolated from pig aorta vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFPhosphatidylinositol 3,4,5-trisphosphate (Ptdlns(3,4,5)P(3)) is linked to a variety of cellular functions, such as growth, cell survival, and differentiation. Ptdlns(3,4,5)P(3) is primarily synthesized by class I phosphoinositide 3-kinases and its hydrolysis by two 3-phosphoinositide 3-phosphatases, PTEN and SHIP proteins, leads to the production of two other second messengers, Ptdlns(4,5)P(2) and Ptdlns(3,4)P(2), respectively. Evidence accumulated over the last years strongly suggest that Ptdlns(3,4,5)P(3) is an important component of signaling pathway operating within the nucleus.
View Article and Find Full Text PDFRecently, the control of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependant signaling by phosphatases has emerged, but there is a shortage of information on intranuclear PtdIns(3,4,5)P3 phosphatases. Therefore, we investigated the dephosphorylation of [32P]PtdIns(3,4,5)P3 specifically labeled on the D-3 position of the inositol ring in membrane-free nuclei isolated from pig aorta vascular smooth muscle cells (VSMCs). In vitro PtdIns(3,4,5)P3 phosphatase assays revealed the production of both [32P]PtdIns(3,4)P2 and inorganic phosphate, demonstrating the presence of PtdIns(3,4,5)P3 5- and 3-phosphatase activities inside the VSMC nucleus, respectively.
View Article and Find Full Text PDF