Publications by authors named "Monique Beuve"

Grapevine-infecting ampelo- and vitiviruses are transmitted by scale insects belonging to several species, among which is the European fruit lecanium, (Bouché) (Hemiptera Coccidae). Our objective was to characterize the transmission biology of grapevine leafroll-associated viruses (GLRaV) and grapevine virus A (GVA) by this soft scale species in order to evaluate its ability to spread these viruses. In transmission experiments with nymphs sampled from different vineyards infected with GLRaV 1, 2, 3 and GVA, transmitted only GLRaV 1 and GVA to healthy vines.

View Article and Find Full Text PDF

Grapevine-infecting ampelo- and vitiviruses are transmitted by several scale insect species, including the Bohemian mealybug, Šulc. Virus infectivity experiments were performed with this species to study the transmission ability of natural populations living in infected vineyards in Alsace, France. Mealybugs were sampled on vines infected by grapevine leafroll-associated viruses (GLRaV-1, -2, and -3) and by grapevine virus A (GVA), either alone or in combinations.

View Article and Find Full Text PDF

Grapevine fanleaf disease, caused by grapevine fanleaf virus (GFLV), transmitted by the soil-borne nematode Xiphinema index, provokes severe symptoms and economic losses, threatening vineyards worldwide. As no effective solution exists so far to control grapevine fanleaf disease in an environmentally friendly way, we investigated the presence of resistance to GFLV in grapevine genetic resources. We discovered that the Riesling variety displays resistance to GFLV, although it is susceptible to X.

View Article and Find Full Text PDF

In the past decade, high-throughput sequencing (HTS) has had a major impact on virus diversity studies as well as on diagnosis, providing an unbiased and more comprehensive view of the virome of a wide range of organisms. Rather than the serological and molecular-based methods, with their more "reductionist" view focusing on one or a few known agents, HTS-based approaches are able to give a "holistic snapshot" of the complex phytobiome of a sample of interest. In grapevine for example, HTS is powerful enough to allow for the assembly of complete genomes of the various viral species or variants infecting a sample of known or novel virus species.

View Article and Find Full Text PDF

P70 is a Pinot Noir grapevine accession that displays strong leafroll disease symptoms. A high-throughput sequencing (HTS)-based analysis established that P70 was mixed-infected by two variants of grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus) and one of grapevine virus A (GVA, genus Vitivirus) as well as by two viroids (hop stunt viroid [HSVd] and grapevine yellow speckle viroid 1 [GYSVd1]) and four variants of grapevine rupestris stem pitting-associated virus (GRSPaV). Immunogold labelling using gold particles of two different diameters revealed the existence of 'hybrid' particles labelled at one end as GLRaV-1, with the rest labelled as GVA.

View Article and Find Full Text PDF

Over the last decade, many scientific disciplines have been impacted by the dawn of new sequencing techniques (HTS: high throughput sequencing). Plant pathology and more specifically virology have been greatly transformed by this 'metagenomics' paradigm shift. Such tools significantly facilitate disease diagnostics with tremendous sensitivity, providing invaluable information such as an exhaustive list of viruses being present in a sample as well as their relative concentration.

View Article and Find Full Text PDF

We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status.

View Article and Find Full Text PDF

For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus-resistant transgenic plants based on the pathogen-derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised.

View Article and Find Full Text PDF

Samples containing two viruses belonging to the genus Polerovirus, beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV), were collected from French and Polish sugar beet fields. The molecular properties of 24 isolates of BChV and BMYV were investigated, and their genetic diversity was examined in the coat protein (CP)- and P0-encoding genes. For the first time, we have demonstrated that beet polerovirus populations include recombinants between BChV and BMYV containing breakpoints within the CP gene.

View Article and Find Full Text PDF

Post-transcriptional gene silencing (PTGS), or RNA silencing, is one of the key mechanisms of antiviral defence used by plants. To counter this defence response, viruses produce suppressor proteins that are able to inhibit the PTGS pathway or to interfere with some of its function. The aim of this study was to evaluate the RNA silencing suppressor (RSS) activity of P0 proteins from selected European isolates of the beet-infecting poleroviruses beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV) using two different experimental systems: (i) agro-infiltration of Nicotiana benthamiana green fluorescent protein-positive plants and (ii) mechanical inoculation of Chenopodium quinoa using a beet necrotic yellow vein virus (BNYVV, genus Benyvirus) RNA3-based replicon.

View Article and Find Full Text PDF

Background: Previous studies have revealed a wide-spread occurence of the partial and complete genomes of the reverse-transcribing pararetroviruses in the nuclear genomes of herbaceous plants. Although the absence of the virus-encoded integrases attests to the random and incidental incorporation of the viral sequences, their presence could have functional implications for the virus-host interactions.

Hypothesis: Analyses of two nuclear genomes of grapevine revealed multiple events of horizontal gene transfer from pararetroviruses.

View Article and Find Full Text PDF

Three aphid-transmitted viruses belonging to the Polerovirus genus, Beet mild yellowing virus (BMYV), Beet chlorosis virus (BChV), and Beet western yellows virus (BWYV), have been described as pathogens of sugar beet. We present the complete biological, serological, and molecular characterization of an American isolate of Beet western yellows virus (BWYV-USA), collected from yellow beet leaves. The biological data suggested that BWYV-USA displayed a host range similar to that of BMYV, but distinct from those of BChV and the lettuce and rape isolates of Turnip yellows virus.

View Article and Find Full Text PDF

Grapevine leafroll syndrome is caused by a complex of up to nine different Grapevine leafroll-associated viruses (GLRaV-1-9) with GLRaV-2 being reported as one of the most variable species of this group. Many methods, including indexing, serological and molecular procedures, have been developed for the detection of GLRaV-2. However, due to the low concentration of the virus in plants and the high variability of GLRaV-2, a method with improved sensitivity and with the capacity to detect of all known variants is required.

View Article and Find Full Text PDF

A study of molecular diversity was carried out on 136 sugar beets infected with Beet necrotic yellow vein virus (BNYVV, Benyvirus) collected worldwide. The nucleotide sequences of the RNA-2-encoded CP, RNA-3-encoded p25 and RNA-5-encoded p26 proteins were analysed. The resulting phylogenetic trees allowed BNYVV to be classified into groups that show correlations between the virus clusters and geographic origins.

View Article and Find Full Text PDF